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This thesis describes the analysis of the semileptonic decay D0 → K0π−µ+ν using

FOCUS data. FOCUS is a fixed target experiment at Fermilab that studies the physics

of the charm quark. Particles containing charm are produced by photon–gluon fusion

from the collision of a photon beam on a BeO target. The experiment is characterized by

excellent vertex resolution and particle identification. The spectrometer consists of three

systems for track reconstruction (two silicon systems and one multiwire proportional

chamber system) and two magnets of opposite polarity. The polarity of the magnet is

such that the events of e+e− pairs produced in the target (which constitutes the main

background) travel through a central opening in the detectors without interactions.

Particle momentum is measured from the deflection angle in the magnets. Three multi–

cell Čerenkov counters are used for charged particle identification (for e, π, K, and

p). Two different tracking systems located after several interaction lengths of shielding

material are used for muon identification. The energy of neutral pions and electrons is

measured in two electromagnetic calorimeters, while an hadron calorimeter is used for

measuring the neutron energy.

During the last four years the FOCUS collaboration provided results on several

charm topics: CP violation, D0–D0 mixing, rare and forbidden decays, precision mea-

surements of semileptonic decays, baryon and meson lifetimes, fully hadronic baryon

and meson branching ratios, charm spectroscopy, Dalitz analyses of resonant struc-

tures, charm anti–charm production, QCD studies involving double charm particles,

and pentaquarks.
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Semileptonic decays, besides having a clear signature for experiments, provide

crucial information for theoretical studies. These decays carry information on the weak

coupling of quarks since they can be used for measuring Cabibbo–Kobayashi–Maskawa

matrix elements. Although the decay occurs through weak interaction, QCD effects due

to quark confinement affect the decay amplitude. These effects can be included through

the form factors, which are predicted by different theoretical approaches (quark models,

lattice QCD, and sum rules). Experiments can measure form factor ratios, and from

the comparison with theory they provide guidance for building a successful theory to

describe hadrons.

In this thesis we present the first measurement of the form factor ratios rv and

r2 for the decay D0 → K0π−µ+ν. We use a model where the K0π− system is described

by a spin 1 component, the K∗(892)−, interfering with a small S-wave component of

constant amplitude and phase (Aeiδ). This model was introduced by FOCUS for the

analysis of the decay D+ → K−π+µ+ν . We measure:

rv = 1.71 ± 0.68 ± 0.34 (1)

r2 = 0.91 ± 0.37 ± 0.10 (2)

where the first error is statistical and the second is systematic. After determining

the form factor ratios, we measure the amplitude A of the S-wave component. Our

sensitivity to the S-wave phase is very limited. Based on isospin symmetry we fix the

phase to the value measured by FOCUS for the D+ → K−π+µ+ν decay (δ = 0.68).

We measure the amplitude to be:

A = 0.35 ± 0.22 ± 0.05 GeV−1 (3)

Finally, we measure the exclusive branching ratio Γ(D0 → K∗(892)−µ+ν)/Γ(D0 →

K0π−π+) to be:

Γ(D0 → K∗(892)−µ+ν)

Γ(D0 → K0π−π+)
= 0.337 ± 0.034 ± 0.013 (4)
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None of the measurements presented in this thesis have ever been reported before

nevertheless it is possible to determine the expected values. Based on isospin symmetry,

the form factor ratios and the S-wave amplitude for the decay we study in this thesis

should have the same value as for the decay D+ → K−π+µ+ν . There are several

measurements of rv and r2 for this decay, and in all cases our result is in excellent

agreement. The amplitude of the S-wave for the D+ decay has been measured only

by FOCUS. Also in this case the agreement with our measurement is very good. We

evaluate the expected value for the branching ratio using results from the CLEO collab-

oration for the semielectronic channel and using isospin symmetry. This last estimate

is derived from the following equality:

Γ(D0 → K∗−µ+ν)

Γ(D0 → K0π−π+)
=

Γ(D+)

Γ(D0)
× Γ(D+ → K∗0µ+ν)

Γ(D+ → K−π+π+)
× B(D+ → K−π+π+)

B(D0 → K0π−π+)

where we use the FOCUS measurement of the semileptonic branching ratio Γ(D+ →

K∗(892)0µ+ν)/Γ(D+ → K−π−π+) and of the D meson lifetimes. For the branching

ratio also we find excellent agreement with the expected values.
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2.5 Particle ID Ranges for the Čerenkov System . . . . . . . . . . . . . . . . 36

2.6 Inner Muon Array Properties . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 FOCUS Master Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 FOCUS Second Level Triggers . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Institutions Running Skim Two . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Skim Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Systematic Uncertainty on rv, r2 , and A . . . . . . . . . . . . . . . . . 122

7.1 Systematic Uncertainty on Branching Ratio . . . . . . . . . . . . . . . . 135

8.1 S-wave Amplitude Result . . . . . . . . . . . . . . . . . . . . . . . . . . 141



xiv

Figures

Figure

1.1 Decay Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Diagram for Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Decay Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Decay Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Schematic for Determining the Angular Distributions. . . . . . . . . . . 12

1.6 Different q2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Schematic for Choice of Pole Masses . . . . . . . . . . . . . . . . . . . . 14

1.8 Expected Values for rv and r2 . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 The FOCUS Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Proton Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The Photon Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 RESH Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The Target Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Primary and Secondary Vertices for Golden Modes . . . . . . . . . . . . 28

2.7 Orientation of PWC Wire Planes . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Straw Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Chapter 1

Theoretical Overview

1.1 The Standard Model of Elementary Particles

The Standard Model [1, 2] describes particles and their strong and electroweak

interactions. It is currently the model that best describes such phenomena, but it is

incomplete in the sense that it requires external input for several parameters that cannot

be derived from first principles. New, more self contained models and theories are being

developed. Some are extensions to the Standard Model (e.g. the Super Symmetric

Standard Model [3]), some are new theories (e.g. the String Theory [4]).

In the Standard Model matter is formed by two species of fundamental particles

with 1/2 spin (particles with half integer spin are called fermions): leptons and quarks.

Both species are divided into three families. For the leptons:
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νe
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νµ
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τ

ντ






while for the quarks:
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c

s′




,






t

b′






The index ′ for the “down” type quarks will be explained later. In units of the

absolute value of the electron charge, the “up” type leptons (electron, muon and tau)
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have charge -1, while the neutrinos have zero charge; the “up” type quarks (up, charm,

top) have charge 2/3 while the “down” type quarks (down, strange and bottom) have

charge -1/3. The fundamental particles interact through exchange of intermediate par-

ticles with integer spin (particles with integer spin are called bosons). The intermediate

bosons for each interaction are listed along with their properties in Table 1.1.

Intermediate Bosons

Interaction Boson Spin charge Mass (GeV/c2)

Weak W± 1 ±1 80.425 ± 0.038
” Z0 1 0 91.1876 ± 0.0021

Electromagnetic γ 1 0 0

Strong g 1 0 0

Table 1.1: Summary of the Properties of the Intermediate Bosons for each interaction.
The gluon mass is a theoretical value, a mass of a few MeV/c2 is not precluded.

For the listing of the intermediate bosons the electroweak interaction has been

“split” into the electromagnetic and the weak interactions. In the Standard Model the

electroweak interaction is described by a quantum field theory based on a symmetry

group for the Lagrangian (the same applies to the strong interaction description). The

symmetry is spontaneously broken at low energies, and the interaction occurs in the

two different components (electric and weak). Due to the success in the theoretical

studies that resulted in the electroweak unification, there are many efforts to investi-

gate the possibility of a description of all the known interactions (strong, electroweak

and gravitational interaction) as different manifestations, due to spontaneous symmetry

breaking, of the same interaction (Grand Unified Theory [5]).

While the W and Z bosons couple to all fundamental fermions, the photon only

couples to fermions with non–zero electric charge, and the gluon only couples to the

quarks. Only quarks contain the strong charge, called color (six colors exist: red, blue,

green and their respective anti–colors). In nature the quarks are confined through the

strong interaction in bound states called hadrons. The strong coupling between two
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quarks increases with the separation distance between the two. As a system of two

quarks is being divided (for instance in an accelerator machine), the gluon field between

the two quarks increases in strength, and eventually new hadrons are formed with the

new quarks that are being created. For this reason no quark (or color–charged particle)

has been observed in nature. The hadrons occur in two types, both with zero net color

charge: the mesons (bound state of a quark and an anti–quark with given color and its

anti–color) and the baryons (bound state of three quarks with three colors).

In the Standard Model all of the interactions occur within each family. While

d′, s′ and b′ are eigenstates for the strong interaction, a rotation in the flavor space is

necessary to find the weak eigenstates u, s and d. The rotation is performed through

the Cabibbo–Kobayashi–Maskawa (CKM) matrix [6]:










d′

s′

b′










=










Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



















d

s

b










(1.1)

The electroweak interaction therefore couples quarks of the three families:






u

d
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c

s




,






t

b






and the coupling (whose intensity is given by |Vqq′ |2) can occur also between quarks of

different families (for instance the amplitude for the decay c→W+d is proportional to

|Vcd|2). The off diagonal elements are much smaller than the diagonal ones (which are

close to ∼1), therefore decays within the same family are favored over decays that change

family. A similar description for the mixing between lepton families is currently under

investigation. The neutrino mass measurements are crucial in this field, as non–zero

masses are required to allow for mixing.

Table 1.1 summarizes other properties of the fundamental fermions: the mass,
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the lepton number, and the baryon number. These last two are conserved quantities in

the Standard Model.

Fundamental Fermions

Fermion Mass Lepton Number Baryon Number

e 0.511 MeV/c2 1 0

µ 105.6 MeV/c2 1 0

τ 1777 MeV/c2 1 0

νe <3 eV/c2 1 0

νµ <0.19 MeV/c2 1 0

ντ <18.2 MeV/c2 1 0

u 1.5–4.0 MeV/c2 0 1/3

d 4–8 MeV/c2 0 1/3

c 1.15–1.35 GeV/c2 0 1/3

s 80–130 MeV/c2 0 1/3

t 174.3±5.1 GeV/c2 0 1/3

b 4.1–4.9 GeV/c2 0 1/3

Table 1.2: Summary of the Properties of Leptons and Quarks

1.2 Weak Decay of Charmed Mesons

The weak decay of hadrons occurs through the conversion of a quark within

the hadron into a lighter quark and a W . The first weak interaction ever observed is

the nuclear β decay. This observation marked the discovery of weak interactions and

led to the discovery of the neutrino particle. The underlying process of this decay,

where a neutron (udd) within an atomic nucleus decays into a proton (uud) and an

e−ν̄e pair, occurs through the conversion of a d quark into an u quark and a W−:

(udd) → (uud)W− (and W− → e−ν̄e).

In this thesis we study the decay of the meson D0 (the ground state of the cu

system) into a final state that contains a mixture of hadrons and leptons (semileptonic

decay): D0 → K0π−µ+ν. In analogy to the nuclear β decay, this decay occurs through

the conversion of the c quark into an s quark and a W+. Figure 1.1 shows some

possible mechanisms for the D meson decays: External and Internal Spectator for the
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Figure 1.1: Lowest order decay mechanisms for mesons containing a c quark. Semilep-
tonic and leptonic decays can only occur through the External Spectator (a) and Anni-
hilation (c), respectively. The Exchange diagram (d) is suppressed in mesons by a factor
(Mq/Mc)

2, where q is the light quark from c (either s or u). The mixing mechanism (f)
allows for D0–D0 transitions.



6

tree diagram, Annihilation, Exchange (which is heavily suppressed in mesons), and

Penguin. The Mixing mechanism, which allows D0–D0 oscillations, is also shown. Since

the lepton and baryon numbers must be conserved at each vertex, the semileptonic decay

can occur only through External Spectator mechanism, while a leptonic decay (where

only leptons appear in the final state) can occur only through Annihilation mechanism.

The differential decay probability for the decay process can be written using

Fermi’s golden rule:

dΓ =
2π

h̄
| 〈f |M |i〉 |2dρ3 (1.2)

where the dynamics of the decay are contained in the squared amplitude of the matrix

element between the final and the initial states (| 〈f |M |i〉 |2), and dρ3, the density of

possible final states, contains the kinematic information. The decay amplitude |M |2 can

be constructed using the Feynman rules that are derived within a perturbative approach

where the transition operator between initial and final states is written as an integral

expansion. In this approach the Hamiltonian that describes the free state is perturbed

by an interaction Hamiltonian of the form1 :

HI ∝ gWJµWµ (1.3)

where Jµ is the current of the fermions and Wµ is the W field. The order of the

expansion is given by the power of the weak coupling constant: (gW )n. The Feynman

rules consist of a prescription of the mathematical terms associated with each element

of the decay to construct the decay amplitude. Fig. 1.2 shows a diagram for the decay

c→ sW+(µ+ν). The matrix element between final and initial states is thus written as:

1 The “interaction operator” perturbative approach was first developed by P.A.M. Dirac in Quantum
Electrodynamics, where HI ∝ JµA

µ, Jµ being the leptonic current and Aµ the electromagnetic field.
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Figure 1.2: A simple schematic for the components of c quark decay is shown.

< f |M |i >∼ (1.4)

uc(Vcs
−igW

2
√

2
)γµ(1 − γ5)us

︸ ︷︷ ︸

−i(gµν − qµqν/M
2
W

q2 −M2
W

︸ ︷︷ ︸

u`(
−igW

2
√

2
)γν(1 − γ5)uν

︸ ︷︷ ︸

Quark Current Propagator Leptonic Current

where q2 = (Pe + Pν)2 is the squared mass of the virtual W , q being equal to the four-

momentum transferred from the non–leptonic particle in the initial state and the lepton

pair in the final state. The currents are built as a vertex factor (−igW

2
√

2
γµ(1−γ5)) between

the incoming (up) and outgoing (up) particles. The quark vertex also includes Vcs.

There are two important features in this structure. The fermionic currents that couple

to the W have a Vector-Axial (V-A) form that reflects the parity non–conservation

in weak decays (i.e. the decay is not symmetric with respect to spatial coordinate

inversion). The propagator for the virtual W is related to the Fourier transform of a

Yukawa potential V (r) ∼ e−r·M/r, where M is the mass of the exchanged quantum

(M = MW ). The Fourier transform in four–momentum space is ∼ 1/(q2 +M2
W ). The

leptonic and hadronic currents are coupled through the propagator term. If q2 << M2
W ,

the propagator assumes the constant form igµν/M
2
W and the matrix element can be

written as:
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M = −iGF√
2
VcsLµHµ (1.5)

where GF is the Fermi constant. In this approximation2 the two currents give now

completely independent contributions. Complications arise due to the fact that the

quarks are confined in the hadron by strong interactions and the hadronic current must

be evaluated between hadronic states rather than free quark states:

Hµ = 〈K|JHAD
µ |D〉 (1.6)

The hadronic current cannot be calculated, but it is constructed considering the

symmetries of the decay process and using the available four vectors (momenta and

polarizations). The current is parameterized through Lorentz invariant coefficients, the

form factors, that depend on q2. All the unknown QCD effects are confined to the

form factors. Different theoretical approaches (quark models [7, 8, 9, 10, 11, 12, 13],

lattice QCD [14, 15, 16, 17, 18], and sum rules [19]) can calculate such coefficients, so

from comparison with the experimental measurements, the theoretical techniques that

are used in other calculations can be tested. The factorization into two currents is not

possible for fully hadronic decays, which are further complicated due to the interactions

between the hadrons in the final state (Final State Interactions, or FSI). For this reason

semileptonic and leptonic decays provide a simple environment for the study of QCD.

Experimental study of D0,+ semileptonic decays is favored over leptonic decays due to

the larger branching fractions3 .

1.3 The D0 → K∗(892)−(K0π−)`+ν Decay

We now describe the semileptonic decay D0 → K∗(892)−(K0π−)`+ν , where

the vector meson (i.e. spin 1 meson) in the final state decays to a K0π− state. The

description applies to any D → K∗(Kπ)`ν decay.

2 The approximation is valid in the decay studied for this thesis, since q2
MAX ' 1 GeV/c2 << M2

W .
3 The rate of leptonic decays is suppressed by a factor proportional to the lepton mass squared.
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Figure 1.3: Diagram for the decay D0 → K0π−µ+ν.

1.3.1 The Decay Amplitude

The D0 → K∗(892)−(K0π−)`+ν decay can be represented by the diagram in

Fig. 1.3. The hadronic current 〈K|V − A|D〉 is constructed using the independent

available four vectors of the decay, the D four–momentum P , the K∗ four–momentum

K, and its polarization ε. Only one combination allows us to build the vector component,

while there are three ways of building a current with axial properties. For this reason

the hadronic current can be parameterized by a “vector” form factor, V (q2), and three

“axial” form factors, A1,2,3(q
2). Following the derivation in [13] (and including the term

proportional to m2
` that is not included in this reference) we find an expression for the

differential decay amplitude on the basis of the four K∗ helicity amplitudes H+,−,0,t,
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Figure 1.4: Schematic of the decay D → K∗`+ν` for the angular variable definitions.

which are linear combinations of V and A1,2,3(q
2):

d5Γ

dmKπdq2d cos θV d cos θ`dχ
∼|k|(q2 −m2

`){

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1 + cos θ`) sin θV e
iχBK∗−H+

−(1 − cos θ`) sin θV e
−iχBK∗−H−

−2 sin θ`(cos θVBK∗−)H0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(1.7)

+
m2

`

q2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sin θ` sin θVBK∗−(eiχH+ + e−iχH−)

+2 cos θ`(cos θVBK∗−)H0

+2(cos θVBK∗−)Ht

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

}

where q2 = (P −K)2 = (P` +Pν)
2, MKπ = KµKµ, BK∗− is a Breit–Wigner distribution

that describes the K0π− resonant state, and the three angles, defined in Fig: 1.4 are:

• θV : the angle between the K0 and the D in the K∗ rest frame

• θ`: the angle between the `+ and the D in the W rest frame

• χ: the angle between the decay planes of the K∗ and the W

As stated before, the form factors V (q2) and A1,2,3(q
2) are included in the helicity

amplitudes:
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H±(q2) = [(MD +mKπ)A1(q
2) ∓ 2MDK

MD +mKπ
V (q2)] (1.8)

H0(q
2) =

1

2mKπ

√

q2
[(M2

D −m2
Kπ − q2)(MD +mKπ)A1(q

2)

− 4M2
DK

2

MD +mKπ
A2(q

2)] (1.9)

Ht(q
2) =

MDK

mKπ

√

q2
[(MD +mKπ)A1(q

2) − M2
D −m2

Kπ + q2

MD +mKπ
A2(q

2)

+
2q2

MD +mKπ
A3(q

2)] (1.10)

The dependence of the decay amplitude on the angles θV and θ` can be easily

derived in terms of the Wigner d–matrices dJ
m1,m2

(cos θ), which express the probability

that a spin J has projections m1 and m2 along the two directions that define cos θ. We

first determine the angular distribution for the K∗ decay, dJ
m1,m2

(cos θV ). The W spin,

that defines the spins of the K∗ and of the `ν pair, can occur in the three helicity states

m = ~p · ~s/|~p| = ±1, 0. In order to conserve angular momentum, the K∗ must be in the

same helicity state, therefore m2 = m, see Fig. 1.5, a). Since the K∗ decays into scalars,

the spin projection along the pion direction is m1 = 0. The probability for the K∗ to

be in such state is proportional to |d1
0m(cos θV )|2. We now move to the W rest frame

to determine the dependence on cos θ`, d
J
m1,m2

(cos θ`). We consider the case where the

`+ mass is negligible. Let the W spin be the polarization axis (see Fig. 1.5, b). The

W has spin component m = ±1, 0 along this direction (m2 = m). The neutrino is in a

left–handed helicity state, and the charged lepton in our m` → 0 approximation is in

a right handed helicity state. For this reason the spin component along the decay axis

is m1 = 1, and the decay amplitude of the virtual W is proportional to |d1
1m(cos θ`)|2.

We have derived the θV and θ` dependence of the decay amplitude for the first term of
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Figure 1.5: Schematic for determining the cos θV (a) and the cos θ` (b) distributions.

Eq. 1.7, where the `+ is in a right handed helicity state:

d2Γ

d cos θV d cos θ`
∝

m=1∑

m=−1

Hm|d1
0m(cos θV )|2|d1

1m(cos θ`)|2 (1.11)

∝ sin2 θV [(1 + cos θ`)
2H+ + (1 − cos θ`)

2H−] + 4 cos2 θV sin2 θ`H0

The second term of Eq. 1.7 refers to the case where `+ is in a left handed helicity

state and can be derived with the same procedure. This term is suppressed by a factor

m2
`/q

2, so it is generally negligible when the charged lepton is an electron. This term is

taken into account for the decay D0 → K∗(892)−(K0π−)µ+ν , where the average q2 is

relatively low and the lepton is a muon4 .

1.3.2 The Form Factors

The form factor is related to the probability that the quarks in the final states

(s and u in this case) hadronize. This probability is higher for a small relative velocity

between the quarks. This configuration corresponds to maximum q2. This is easy to

picture from figure 1.6 (a). In a simple approximation where we neglect the u and we

4 This term is overwhelmingly important in the semileptonic decays of the B mesons when the
charged lepton in the final state is a τ .



13

imagine the c and s as free quarks, the following holds (in the c rest frame):

q2 = (P` + Pν)2 = (Pc − Ps)
2 = M2

c +M2
s − 2McEs (1.12)

so q2 reaches a maximum when the s momentum is minimum, and this corresponds to

a low relative velocity between the s and the u. The two situations (maximum and

minimum q2) are pictured in Fig. 1.6 b and c. A model that reproduces this behavior

is the “vector dominance” model, that uses the pole mass form for the form factors:

Ai(q
2) =

Ai(0)

1 − q2

M2
A

(1.13)

V (q2) =
V (0)

1 − q2

M2
V

(1.14)

This model is based on an approximation where the probability is maximum when

the c and s form an excited bound state (with mass MA,V ) with the same quantum

numbers as the W , see Fig 1.7. For the axial and vector component the quantum

numbers are JP = 1+ and JP = 1−, respectively, so MA = M(D+
s1)=2.5 GeV/c2 and

MV = M(D∗+
s )=2.1 GeV/c2. This dependence of the form factors on q2 is largely used

in quark models. With this expression for the form factors, the decay amplitude can be

parameterized by A1(0) and the three ratios rv = V (0)/A1(0), r2 = A2(0)/A1(0) and

r3 = A3(0)/A1(0).

1.4 Inclusive Decay D0 → K0π−µ+ν and the S-wave Component

In this thesis we investigate the inclusive decay D0 → K0π−µ+ν. There are no

previous measurements of this decay, but the considerable data from the experimental

study of D+ → K−π+µ+ν provide excellent insight about the D0 decay [20, 21, 22,

23, 24, 25, 26]. According to isospin symmetry the D+ and D0 particles are different

isospin5 states of the same particle (like the proton and the neutron), so the semileptonic

5 The isospin state Iz of a particle is related to its charge Q baryon number B and strangeness S
by: Q = Iz + 1

2
(B + S).
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Figure 1.6: Different q2 configurations for the semileptonic decay: a): generic configura-
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Figure 1.7: Schematic for the argument underlying the choice of the pole masses choice.
The decay probability is higher when the q2 transferred corresponds to the mass of a cs
resonance with the same quantum numbers as the W .
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decay amplitudes should be the same up to electromagnetic corrections. A recent study

of D+ → K−π+µ+ν from the FOCUS experiment has shown that a description in

which the K−π+ system is entirely composed of the K∗(892)0 spin 1 resonance [27]

agrees poorly with data. A model that includes a small K−π+ component with spin 0

has been proven to be a much better description of the data. The S-wave component

is represented by fixed amplitude and phase (Aeiδ) that interferes with the K∗. To

account for this component the decay amplitude in Eq. 1.7 must be modified as:

d5Γ

dmKπdq2d cos θV d cos θ`dχ
∼|k|(q2 −m2

`){

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1 + cos θ`) sin θV e
iχBK∗−H+

−(1 − cos θ`) sin θV e
−iχBK∗−H−

−2 sin θ`(cos θVBK∗− +Aeiδ)H0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

(1.15)

+
m2

`

q2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sin θ` sin θVBK∗−(eiχH+ + e−iχH−)

+2 cos θ`(cos θVBK∗− +Aeiδ)H0

+2(cos θVBK∗− +Aeiδ)Ht

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

}

1.5 Studies Presented in this Thesis

In this thesis the analysis of the decay D0 → K0π−µ+ν using FOCUS data is

presented. Using a model that describes the K0π− state as a dominant K∗(892)− state

interfering with a small S-wave component, we measure the form factor ratios rv and

r2 (our sensitivity is inadequate for the measurement of r3). The investigation of the

S-wave component is also presented, along with measurements of its amplitude. Fi-

nally, the inclusive branching ratio measurement Γ(D0 → K∗(892)−µ+ν)/Γ(D0 →

K0π−π+) is shown. All the measurements presented in this thesis have never been

performed for the D0 meson. The wealth of data from D+ analyses from FOCUS

and previous experiments provides guidance on the expected values for the different

measurements. Fig. 1.8 shows previous measurements of the form factor ratios for
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the decay D+ → K−π+µ+ν , along with estimates from theory (which are calculated

without distinction between the D0 and the D+). None of the previous measurements

have accounted for S-wave, except for FOCUS. Moreover, for the FOCUS measurement

backgrounds at low q2 were rejected.
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Chapter 2

The FOCUS Spectrometer

2.1 The FOCUS Experiment

FOCUS–E831 (Pho(FO)toproduction of Charm with an Upgraded Spectrometer)

is a general purpose fixed target experiment that collected data during the 1996–1997 run

at Fermilab. The experiment is an upgrade of the previous experiment E687 [28]. Major

improvements led to an increase of about a factor of 10 in charm particles reconstructed

(about 106 events are fully reconstructed in the “golden modes” D0 → K−π+π−π+,

D0 → K−π+, and D+ → K−π+π+) and better vertex resolution. Using an improved

target where silicon track detectors interleave the active material, an excellent resolution

in lifetime is achieved (about 30 fs for most modes). Charm particles are produced via

photo–gluon fusion, which occurs through the collision of a photon beam on a BeO tar-

get. In the past four years FOCUS has produced analyses on different charm topics: CP

violation, D0–D0 mixing, rare and forbidden decays, precision measurements of semilep-

tonic decays, baryon and meson lifetimes, fully hadronic baryon and meson branching

ratios, charm spectroscopy, Dalitz analyses of resonant structures, charm anti–charm

production, QCD studies involving double charm particles, and pentaquarks. Fig 2.1

shows a schematic of the FOCUS spectrometer, which will be described in detail in the

rest of the chapter. Briefly, two magnets of opposite polarity deflect charged tracks.

From the bend angle, which is measured in five stations of multi–wire proportional

chambers, the track momentum is determined. A gap in the spectrometer around the
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beam direction allows for the e+e− pair to travel through without interactions in the

material. The magnetic fields focus the pairs onto a calorimeter which measures their

energy and the energy of beam photons that do not interact in the experimental target.

Track direction upstream of the magnets is reconstructed using four Silicon Microstrip

detectors. Charged particle identification for electrons, pions, kaons, and protons is per-

formed using three multi–cell threshold Čerenkov counters. Neutral pion identification

as well as electron and positron identification is determined from the energy deposited in

two electromagnetic calorimeters. A hadron calorimeter measures the energy deposited

from pions, kaons, protons, and neutrons. Muons are identified by the hits left in

tracking systems after several meters of material which absorbs the other particles. An

“inner” muon system detects high momentum particles that travel through the whole

spectrometer. The active material consists of scintillators with the shielding material

containing about 3 m of steel. Muons with low momentum and large aperture angles

are identified by the “outer” muon system. This outer muon system consists of RPC

chambers, and the first magnet provides the shielding material.

2.2 The Beam Line

2.2.1 The Tevatron Proton Beam

The high energy photon beam of the FOCUS experiment is produced from the

800 GeV/c proton beam extracted from the Tevatron synchrotron accelerator. The

proton acceleration is performed in five steps. Hydrogen ions H− are first accelerated

to 750 KeV by the electrostatic accelerator Cockcroft-Walton and inserted in the LIN-

ear ACcelerator. The LINAC accelerates the ions to 400 MeV and strips the electrons

by sending the beam through a thin carbon foil. The final three steps in the pro-

ton acceleration process are performed by three synchrotron accelerators: the Booster

(which accelerates protons to 8 GeV/c), the Main Ring (150 GeV/c) and the Tevatron



21
Cockcroft-Walton

LINAC

Main Ring / Tevatron

Booster

Figure 2.2: The five accelerators that produce 800 GeV/c protons from hydrogen ions
H− are shown. The Main Ring and the Tevatron use the same tunnel. The LINAC
linear accelerator is 130 m long, the Booster ring is about 480 m long, and the Tevatron
ring is about 6.4 km long.

(800 GeV/c). The five accelerators are shown in Fig. 2.2. The protons (which are

grouped into “batches” by the booster), are accelerated in the Tevatron for 40 seconds

and, during the fixed target runs, slowly spilled over 20 seconds to the fixed target

experiments. The Tevatron works at a radio frequency of 53 MHz, so every 18 ns a new

proton batch reaches the interaction area. The proton beam directed to the tunnel can

be switched towards different areas, the proton, meson and neutrino area. The FOCUS

experiment uses the Wide–Band Photon Beam of the proton area.

2.2.2 The Production of the Photon Beam

The photon beam is produced with a strategy that aims at removing contami-

nation from other neutral particles (e.g. π0, n, Λ0, and K0), and at preserving high

energy. The procedure consists of three steps:

(1) Conversion of the proton beam into a neutral beam

(2) Conversion of the neutral beam into an e+e− beam

(3) Photon beam production through bremsstrahlung of e+ and e−
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Three different targets are used for these steps, and the energy and the intensity

of the beam are depleted at each step. The distance between the first target for the

photon beam production and the experimental target is 350 m. Fig. 2.3 shows the

beamline.

The 800 GeV/c protons from the Tevatron collide with a liquid deuterium target

(“primary target”) which is about 1.6 m long. From hadronic interactions different

neutral particles are produced, among them neutral pions that decay into γγ pairs.

The large A/Z2 ratio (∼ higher radiation length over interaction length) of the deu-

terium provides a high cross section for strong interactions while reducing the photon

reinteractions.

After emerging from the primary target, charged particles are deflected from the

zero–degree beamline. The neutral beam is sent through a half radiation length lead

converter. The photons convert to electron–positron pairs, while the other particles have

reduced interactions. The target is chosen to be short enough so that, while allowing the

photon conversion, the reduction of the electrons average energy though bremsstrahlung

is low. Magnet dipoles deflect the e+ and e− around a hadronic “dump” that absorbs

the neutral beam.

The energy of the charged beam is selected through collimators and magnets.

The nominal momentum of the beam is 300 GeV/c. In order to reduce the loss in

beam intensity due to the multi–step process, e± with a wide momentum spectrum

are captured in the beam. The energy distribution has a spread of about 15% around

the nominal energy, therefore this beamline is called “Wide Band”. After being re-

focused on the beamline, the e± energy is measured in a spectrometer which consists

of analysis magnets and a silicon tracking system. Finally, the e± beam impacts on

a lead radiator where photons are produced through bremsstrahlung. The radiator is

approximately 20% of a radiation length long, in order to reduce secondary production

of photons, which would make it more difficult to evaluate the photon beam energy.
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After the radiator, dipole magnets deflect the electrons and positrons away from the

beamline, towards two calorimeters (RESH and POSH) for their energy measurement.

The photon beam, which has an average momentum of 180 GeV/c, interacts in the ex-

perimental target. A synchrotron radiation background is produced by the electrons in

the sweepers. This background is reduced by a lead wall and a lead collimator between

the electron dump and the experimental target. The electrons produced in the lead wall

are eliminated by other magnets.

The three step process, although causing a decrease of the beam energy and

intensity, has many advantages. The main advantage is the production of a beam

which has a small amount of hadron contamination. Simulation and calibration studies

reveal that a possible background comes from Λ0′ s that decay into the pπ− final state.

These charged particles are within the acceptance of the e± beam line and arrive at

the radiator, where they produce neutral hadrons that contaminate the photon beam.

According to the studies performed, the contamination in the photon beam of such

events is less than one event every 105, and the trigger accepts only 1% of events

produced by these neutral hadrons colliding on the target. The photon beam production

method also allows a good determination of the photon energy (as will be described

in the next section). Finally, the beam elements can be varied in order to perform

calibration studies. For instance, by removing the radiator and turning off the sweeping

dipoles, an e± beam is produced.

2.2.3 Determination of the Photon Beam Energy

The energy of the photon colliding on the target of the experiment is given by:

E(γ) = E(ei) − E(er) −
∑

E(γsec) (2.1)

where ei and er are the incoming and recoil electron (positron) before and after the

radiator, respectively, and the sum is over the photons (γsec) which are produced from
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Figure 2.4: Schematic of the Recoil Electron Shower Hodoscope

multiple bremsstrahlung and that either do not interact in the target, or interact elec-

tromagnetically. Three different systems measure these three energies.

The energy of the incoming electron is measured by the deflection in the magnetic

field of two dipole magnets. Five microstrip planes measure the tracks direction in the

horizontal plane (bend plane). Two planes are positioned before the magnets, one in

between (to resolve ambiguities in multi–tracks events), and the other two after the

magnets. Each plane consists of 256 strips each with a 300 µm pitch and the active area

is 7.7 cm wide and 5.7 cm high. The geometric acceptance of the system is about 81%,

and it delivers a precision of 2% on the momentum measurement. The spectrometer

area is shown in the inset in Fig. 2.3.

The energy of the recoil e± emerging from the radiator is measured from the bend

angle in the magnetic field, but in this case the deflection is determined using electro-

magnetic calorimeters: a Recoil Electron Shower Hodoscope (RESH) for electrons, and

a recoil POsitron Shower Hodoscope (POSH) for positrons. A schematic of the RESH

detector is shown in Fig. 2.4. Dipole magnets placed along the beamline deflect the

electrons (positrons) towards the RESH (POSH). Both RESH and POSH are composed

of 13 sampling calorimeters, where the passive material is lead and the detectors are

scintillators. The length of the calorimeters is 24 radiations lengths. The impact point of
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the electron (positron), which determines the bend angle and therefore the momentum,

is given by the nominal position of the hit calorimeter, or the average of the positions if

more than one is hit. The energy of the track measured by the calorimeter must agree

with the momentum measurement from the bend angle. The acceptance of the system

lies within the range ∼ 0.35 < Eγ/Ee < 0.9, which corresponds to photon momenta

between 122 GeV/c and 315 GeV/c.

The energy of non–interacting photons is measured by the Beam Gamma Monitor

(BGM). The BGM is a small acceptance calorimeter (23 cm × 23 cm) located down-

stream of the FOCUS spectrometer. The BGM measures the electromagnetic energy in

a small cone around the beam line. The detector is a 24 radiation lengths long sampling

calorimeter with 24 layers of alternating lead and scintillator. The photons that do not

interact in the target travel through the entire FOCUS detector and reach the BGM.

About 20% of the time the photons interact electromagnetically in the target and pro-

duce e+e− pairs. These pairs are focused on the BGM by the analysis magnets of the

experiment. The e+e− energy is also measured in the BGM.

2.3 The Target Region

The photon beam is directed on the target of the experiment. There are three

different target configurations used in FOCUS. About 2/3 of the data has been collected

with the most upgraded configuration.

The initial target configurations consisted of Berillyum. This material was chosen

for the low atomic number Z reduces the background from e+e− production (the cross

section for this event is proportional to Z2), relative to charm photoproduction. During

the course of the E687 experiment, it was discovered that an excellent background

rejection is achieved by requiring that the decay of the charmed particle to occur outside

of the target material. This requirement reduces contamination from events where

a hadronic reinteraction in the material is misidentified as a charm decay. In order
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to increase the percentage number of decays “in air”, the target was longitudinally

segmented. With this configuration most of the background comes from other charm

decays, that are better understood and easier to simulate than hadronic reinteractions.

The second target configuration consisted of four layers of BeO. The greater

density of BeO permits the use of thinner segments and increases the number of decays

outside the material. Each target segment was 6.75 mm thick and had an area of

(25.4 mm)2 in the plane transverse to the beam direction.

The final target configuration transforms the target region into an active track

reconstruction system by introducing silicon strip planes between the target segments.

The Target Silicon system (TSSD) is composed of two stations, one (TSSD1) between

the second and the third slabs, and the other (TSSD2) downstream of the last slab.

Each station contains two planes with different views (±450 from the horizontal). Each

plane is 300 µm thick and has 1024 instrumented strips each with a pitch of 25 µm. Each

strip measures 50 µm × 25 µm. The target region is shown in Fig. 2.5. In Fig. 2.6 the

distribution of reconstructed primary and secondary vertices for background subtracted

D decays are shown. From the distribution of the secondary vertex one observes how

the target configuration allows for most of the decays to occur in air. The target silicon

detector is described in more detail in Reference [29].

2.4 Tracking Systems Downstream the Target

The track reconstruction of charged particles downstream of the target is per-

formed by three systems: Silicon Strip Detectors (SSD), Multi–Wire Proportional Cham-

bers (MWPC), and Straw Tubes.

2.4.1 Silicon Strip Detectors

High resolution tracking in the region between the target and the first magnet

is performed by the Silicon Strip Detector (SSD). The charged particles that cross the
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Figure 2.5: The Target region and the upstream systems of tracking detectors (TSSD
and SSD) are shown.
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Figure 2.6: Distribution of the z coordinate of the primary and secondary vertices for
background subtracted charm events. The primary vertex distribution (black points)
shows the location of the target segments and the TSSD stations (note how a small
fraction of the events is produced in the active tracking system). The secondary vertex
distribution (red points) shows how most of the events occur outside the material.
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Table 2.1: The specifications of the SSD planes (listed from the most upstream to the
most downstream).

Active Area
Station Total High Res. Strip Pitch

1 2.5 × 3.5 cm2 1.0 × 3.5 cm2 25 µm , 50 µm
2 5.0 × 5.0 cm2 2.0 × 5.0 cm2 50 µm , 100 µm
3 5.0 × 5.0 cm2 2.0 × 5.0 cm2 50 µm , 100 µm
4 5.0 × 5.0 cm2 2.0 × 5.0 cm2 50 µm , 100 µm

silicon strip ionize the material. Their direction is reconstructed from the collection of

the released charge by the readout strips, the establishment of a hit, and the subsequent

track reconstruction algorithm.

As shown in Fig. 2.5, the SSD system consists of twelve planes divided into four

stations of three planes each. The first three stations are 6 cm apart, while the last

station is 12 cm downstream of the third station. The three planes in each station

are oriented along three different directions: -135◦, -45◦ and -90◦ with respect to the

horizontal axis (x). To increase the resolution in the region of small aperture angles,

where the track density is higher, each plane has a finer pitch in the inner region than

in the outer one. For the first station where due to the shorter lever arm the tracks are

closer to each other, the two regions have 25 µm and 50 µm pitch, respectively. For the

other planes the pitch values are 50 µm and 100 µm. Each plane has 688 ADC readout

channels. The spatial resolution of the different planes ranges from 14 µm to 7 µm.

Table 2.1 shows the specifications of each station.

2.4.2 Multi–Wire Proportional Chambers

Tracking downstream of the first magnet is performed by Multi–Wire Propor-

tional Chambers (MWPC). The information from the MWPC is also used to determine

each charged particles momentum from the bend angle in the magnetic field of the two

analysis magnets of opposite polarity. In a gaseous environment, planes of high voltage

wires and sense wires at ground are alternated. Charged tracks that travel through the
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Figure 2.7: The four views of each MWPC station are shown.
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Table 2.2: The specifications of the five Multi–Wire Proportional Chambers.

Wire Wire Wires/plane Size Position
Chamber spacing X Y U V (X × Y ) (cm from target)

P0 0.080” 376 640 640 640 76 × 127 cm2 403
P1 0.130” 480 704 768 768 152 × 229 cm2 644
P2 0.130” 480 704 768 768 152 × 229 cm2 879
P3 0.080” 376 640 640 640 76 × 127 cm2 1,444
P4 0.130” 480 704 768 768 152 × 229 cm2 2,286

system ionize the gas. The freed electrons that are accelerated towards the sense wire

ionize the gas too, producing a cascade charge that is collected on the wire. The gas is

a mixture of argon (65%) and ethane (35%), bubbled through 0◦ C ethyl alcohol. The

system consists of twenty planes divided into five stations of four planes corresponding

to four views: X along the vertical axis (which measures the direction in the horizontal

plane), an orthogonal Y view, and two views at ± 11.30 from the Y view (U and V ). The

different views are shown in Fig. 2.7. In order to achieve good momentum resolution,

there is more information provided in the bend (vertical) view. The first three stations

(P0, P1 and P2) are placed between the magnets while the last two (P3 and P4) are

placed downstream of the second magnet. Momentum determination is performed using

the information from the SSD system when the track is reconstructed in both systems.

The apertures of the magnets limit the maximum angles of the emerging track, so P0

and P3 are smaller than the other stations. Table 2.2 shows the specifications of the

MWPC.

2.4.3 Straw Tubes

Additional information, which has yet to be used to its full potential, is provided

by straw tube wire chambers. The initial design for the tracking detectors was based

on a plan to deaden the wire chambers in the high intensity pair region. In order to

reconstruct tracks in this region Straw Tubes Chambers were built, as they can operate

in higher rate environments than the MWPC. It turned out that deadening the MWPC
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Figure 2.8: The layout of the Straw Tubes is shown.
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Straw Straw Wires/view Total

Chamber length Vertical Angled Wires

ST0 138 cm 3 × 10 3 × 38 258
ST1 241 cm 3 × 10 3 × 74 474
ST2 241 cm 3 × 10 3 × 74 474

Table 2.3: Specifications of the three straw tube chambers.

was not necessary. The straw tubes worked fine, but they were not implemented in

tracking.

There are three stations of Straw Tubes adjacent to P0, P1 and P2. The Straw

Tubes work with the same gas–ionizing technique as the MWPC, but the high voltage

cathode consists of a metal coated tube around the ground sense wire. Each station has

three views: one along y (to measure the horizontal direction), and the other two at

± 11.30 from the vertical. There are three layers of tubes for each view. The Straw Tube

layout within a chamber is presented in Fig. 2.8 and the details for the three chambers

are shown in Table 2.3.

2.5 Analysis Magnets

Two large aperture analysis magnets (M1 and M2) are used to deflect charge

particles along the y direction for the momentum measurement. The magnet M1 is

placed at the beginning of the spectrometer, between the last SSD station and P0. The

magnet M2 lies between P2 and P3. The magnets are 1.7 m long and have apertures

which measure 76 cm (along x) × 127 cm (along y). The magnets M1 and M2 work

with currents of 1020 A and 2000 A, respectively. Each magnet is characterized by the

transverse momentum “kick”, which for a given track relates the bend angle ∆θ to the

momentum P by:

∆θ =
PT kick

P

The PT kick of M1 and M2 are +0.400 GeV/c and -0.835 GeV/c, respectively.

The values are chosen in order to focus the e+e− pairs on the BGM.
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Threshold (GeV/c)

Detector Gas π K p

C1 58% He/42% N2 8.5 29.9 56.8
C2 N2O 4.5 16.2 30.9
C3 He 17.0 61.0 116.2

Table 2.4: Characteristics of the Čerenkov detectors

2.6 Čerenkov Counters

The Čerenkov counters [30] are the main device for charged particle identification

in FOCUS. They identify electrons, pions, kaons, protons, and in a small momentum

range can be useful in distinguishing pions from muons. The identification method

is based on the Čerenkov radiation that is or is not emitted by a particle traveling

through the detector. A charged particle emits Čerenkov light in a medium with index

of refraction n if its velocity β is greater than the velocity of light in that medium,

namely if (in c = 1):

β =
P

E
=

P√
P 2 +m2

>
1

n

The momentum threshold depends on the mass of the particle:

Pth =
m√
n2 − 1

and the light is emitted at an angle with respect to the flight direction given by:

cosθ =
1

nβ

as schematically shown in Fig. 2.9

There are three multicell Čerenkov counters called C1, C2, and C3, that work in

threshold mode. The gases used in the three detectors are different, and provide a large

momentum range where pions are well separated from kaons and protons, and a fairly

wide range for the kaon–proton separation. The momentum threshold for electrons is
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Figure 2.9: A schematic for the Čerenkov radiation angle of emission is shown.
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Definite Čerenkov ID range (GeV/c)

e π K p
3-chamber 0.16–8.5 4.5–8.5 16.2–29.9 16.2–56.8
5-chamber 0.16–17.0 4.5–17.0 16.2–56.8 16.2–56.8 and 61.0–116.2

Ambiguous Čerenkov ID range (GeV/c)

e/π e/π/K K/p π/K/p
3-chamber 8.5–29.9 29.9–56.8 4.5–16.2 0.16–4.5
5-chamber 17.0–61.0 61.0–116.2 4.5–16.2 0.16–4.5

Table 2.5: Particle positive and ambiguous identification ranges for tracks reconstructed
in 3 and 5 MWPC.

very low, and electrons are always above threshold in C1, C2 and C3. The properties

of C1, C2 and C3 are summarized in Table 2.4, while Table 2.5 shows the momentum

ranges for the different particles identification.

The counter C1 is located between P0 and P1 and uses a Helium (58%) and

Nitrogen (42%) mixture. The momentum thresholds for pions, kaons, and protons are

8.5 GeV/c, 29.9 GeV/c, and 56.8 GeV/c, respectively. The gas volume is optically

divided by mirrors into 90 cells (see Fig. 2.10 a). The mirrors are used to reflect the

Čerenkov radiation onto photomultiplier tubes placed outside the gas volume. Different

mirrors are used for the inner and outer regions. For the cells in the outer region (cells 1

to 40) spherical mirrors focus the photons on each individual photomultiplier tube. The

inner region (41–90) uses planar mirrors at ±450 from the beam direction, that reflect

the light towards 50 photomultiplier tubes. These tubes are surrounded by Wilson

cones, which serve to reflecting the light to the apex of the cone, where the tubes are

located.

The counter C2 is located between P1 and P2 and uses Nitrous Oxide (N2O). The

thresholds for pions, kaons, and protons are 4.5 GeV/c, 16.2 GeV/c, and 30.9 GeV/c,

respectively. For both inner and outer cells planar mirrors at ±45◦ with respect to the

beam direction are used. The division in cells is shown in Fig. 2.10 b.
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The counter C3 lies between P3 and P4 and uses Helium. The momentum thresh-

olds for pions, kaons and protons are 17.0 GeV/c, 61.0 GeV/c, and 116.2 GeV/c, re-

spectively. The gas volume is divided into 100 cells by spherical mirrors that focus the

Čerenkov radiation onto the photomultiplier tubes outside the gas volume (see Fig. 2.10

c). A central gap prevent e+e− pairs from interacting in the counter.

2.7 Calorimetry

Three calorimeters are used to measure the energy of different particles: the Outer

Electromagnetic Calorimeter, the Inner Electromagnetic Calorimeter, and the Hadron

Calorimeter. The measurement is performed using a destructive process. The parti-

cle that travels through the material produces other particles, and by detecting these

particles the energy of the parent is measured. The Inner Electromagnetic Calorimeter

and the Hadron Calorimeter are included in the trigger logic. For this analysis these

detectors are used only for their trigger function.

2.7.1 Outer Electromagnetic Calorimeter

The Outer Electromagnetic Calorimeter [31] is situated between P2 and the sec-

ond analysis magnet, M2, and it is used to measure the energy of electrons, positrons,

and photons in the outer region. The energy measurement is performed by reconstruct-

ing the electromagnetic shower that originates from bremsstrahlung (e± → e±γ) and

pair conversion (γ → e+e−).

The detector is 18.4 radiation lengths long and has an aperture that matches the

aperture of M2 and a gap to allow conversion pairs to pass through without interact-

ing. This geometry determines an angular acceptance of 28 mrad ≤ θx ≤ 142 mrad

and 49 mrad ≤ θy ≤ 114 mrad. The calorimeter is built with a sampling structure

(see Fig. 2.11), with 23 alternating layers of lead (where the interactions occur) and

scintillators (that detect the charged particles).
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Figure 2.11: A side view of the Outer Electromagnetic Calorimeter.
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Figure 2.12: A frontal view of the tiles arrangement in the tie breaker plane.
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The scintillator planes consist of rectangular tiles, and are divided in four views,

x, y, s and z (the last two being at ±450 from the horizontal). The event where

two photons leave four hits in the x and y oriented planes has a four fold ambiguity.

The ambiguity is solved by using the s and z information, energy matching, and the

information from an additional plane (“tie breaker” plane) of 100 scintillator tiles, the

arrangement of these tiles is shown in Fig 2.12.

2.7.2 Inner Electromagnetic Calorimeter

The Inner Electromagnetic Calorimeter [32] is located immediately downstream

of the last Multi–Wire Proportional Chamber. It measures the energy of electrons,

positrons, and photons. The detector consists of 802 lead glass blocks arranged in a

tower geometry, and is divided in two by a vertical gap of 14 cm that allows conversion

pairs to pass through without interacting (see Fig. 2.13). The blocks are 60.2 cm long

in the z direction (which corresponds to 18.75 radiation lengths and 2.2 interactions

lengths), and measure 5.8 cm×5.8 cm in the plane transverse to the beam direction

(10% of the blocks are slightly smaller). Each block is wrapped in aluminized mylar

which reflects towards a photomultiplier tube the photons in the electromagnetic shower.

The information on the energy deposited in groups of nine blocks is used in the trigger

logic.

2.7.3 Hadron Calorimeter

Charged and neutral hadronic energy is measured by the Hadron Calorimeter [33,

34], where hadrons interact strongly producing mainly pions in the final state. Most

hadrons (60%) start their hadronic shower in the lead glass. The Hadron Calorimeter

is placed downstream of the Inner Electromagnetic Calorimeter and it consists of 28

alternate layers of 4.4 cm thick steel and 0.7 mm thick scintillator tiles. The calorimeter

is 209 cm long (7.8 interaction lengths) and measures 200 cm×300 cm along x and y,
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respectively. Each scintillator plane is composed of 66 tiles, with smaller sized tiles in

the inner region and larger sized tiles in the outer region (see Fig 2.14). Multiple layers

are optically combined to form a tower geometry: the first nine layers form the first

tower, the next fifteen layers form the second tower and the last four layers form the

third tower. This structure allows for a small number of readout channels (192) while

still measuring the energy as a function of depth. The scintillators have a fast response

and the information provided by the hadron calorimeter is included in the first level

trigger.

2.8 Muon Identification Detectors

The Outer and the Inner Muon detectors are used to identify muons. Muons do

not interact strongly, so they do not undergo hadronic absorption, and, due to their

relatively large mass, the electromagnetic showering they produce is negligible. For

these reasons muons are identified by reconstructing them in tracking systems placed

downstream of iron shielding blocks where electrons and hadrons are almost completely

absorbed. The bulk of the data used for this thesis uses the information provided by

the Inner Muon Detector for muon identification of the data.

2.9 Outer Muon Detector

The Outer Muon Detector is used for the reconstruction of muons produced at

large angles with respect to the beam direction. It is located immediately downstream

of the analysis magnet, M2, and the Outer Electromagnetic Calorimeter, which are used

as shielding material from electrons and hadrons. The charged tracks emerging from

the filters are detected by resistive plate chambers, which have the advantage of being

relatively insensitive to the magnetic field.

A resistive plate chamber is made of two plates at high potential difference sep-

arated by a gap which is filled with gas. The charged particle that travels through the
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gap ionizes the gas and the freed charge is collected by readout strips. FOCUS uses

double gap resistive plate chambers with readout strips in the center of the two gaps,

as shown in Fig. 2.15. There are 24 RPC modules of 1 cm × 1.6 cm or 1 cm × 1.8 cm.

The modules are grouped in eight towers (defined by the modules that are aligned along

the z axis) with three chambers each (for the x, y and +450 directions). The towers are

arranged around the aperture of M2 as shown in Fig. 2.16.

The plates are made of graphite coated bakelite, which has a high resistivity

(1011Ω·cm). The 2.9 cm wide aluminum coated plastic readout strips are placed between

the bakelite plates with a 2 mm gap from each other. The strips are cut in half along the

long axis. Each four adjacent strips are OR’d together, so that the number of output

channels per module is limited to 13–16. This results in a resolution of about 12 cm,

which,given the multiple Coulomb scattering in M2, is adequate.

The region of ionization avalanches is limited by the high resistance of the plates

and the use of a “quenching” gas. Due to the high operating voltage (∼kV), the break-

down limit is often reached. The avalanches are caused by the ultra violet photons

emitted as electrons recombine with ions. A quenching gas absorbs these photons and

disperses their energy. The gas used for FOCUS was a mixture of 71% argon, 16% CO2,

8% isobutane and 5% freon.

The Outer Muon system is also used in the trigger logic.

2.10 Inner Muon Detector

The Inner Muon system is used to detect muons with high momentum and small

angle. The detector consists of three stations of scintillating hodoscopes (MH1, MH2

and MH3) placed at the end of the FOCUS apparatus. Each station is preceded by

a block of steel (61 cm, 129 cm and 68 cm long from the most upstream to the most

downstream), which, in addition to the 126 cm of steel of the hadron calorimeter, filters

particles other than muons. The detector layout is shown in Fig. 2.17. Each station has
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Number of counters

Station Pitch x/u y/v Total

MH1 5 cm 84 126 210
MH2 8 cm 52 78 130
MH3 10 cm 54 54 108

Table 2.6: The properties of the Inner Muon Arrays are shown. x and y apply to MH1
and MH2; u and v apply to MH3.

two views: x and y for MH1 and MH2, u and v for MH3 (which corresponds to ±30◦

with respect to the beam direction). A schematic of the counters layout is shown in

Fig. 2.18.

The stations have scintillating strips with a large pitch, since position resolution is

not important due to multiple Coulomb scattering in the filters. The pitch and number

of counters for each station are shown in Table 2.6

2.11 Trigger

The trigger is the electronic logic that makes an on–line selection of interesting

events. This on–line process is necessary in order to reduce the event rate (about

10 MHz) to the data acquisition rate of 1 kHz. The main background is electromagnetic

e+e− pair production, which has a cross section about 500 times larger than the hadronic

cross section (and 50,000 times larger than the charm cross section). Pairs are produced

at small angles and do not deposit energy in the hadronic calorimeter, so these events

are mainly rejected by requiring wide angle tracks and setting a threshold for the energy

measured in the hadronic calorimeter.

The trigger consists of two main steps. The first level trigger, called “Master

Gate”, takes 200 ns. During the first 160 ns the information is transferred from the

spectrometer, and in the last 40 ns the decision is made. If the event passes the Master

Gate, then a second level trigger begins. This takes 1.2 µs and, if the event passes the

requirements, it sends the signal for writing the data on magnetic tape (process that
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takes about 35µs). If the event is rejected then the system is reset in 1µs.

2.11.1 First Level Trigger: the Master Gate

Different combinations of signals from the detectors have been used for different

Master Gate triggers. Most of the data (including the one used for the analysis presented

in this thesis) has been collected using the hadronic Master Gate trigger (MG1), which

combines the signal from five detectors:

• TR1: This is a scintillator counter with PMT readout that lies between the

last TSSD station and the first SSD station. This detector signals that an event

with production of charged tracks has occurred.

• TR2: This is a scintillator detector with PMT readout made of four coun-

ters downstream of the last SSD station. This detector signals that an event

with production of charged tracks has occurred, and that it enters within the

acceptance of M1

• H × V: This detector (see Fig. 2.19 a) consists of 36 scintillator counters placed

between C3 and the Inner Electromagnetic Calorimeter. It detects charged

particles produced at relatively wide angles with respect to the beam direction.

In order to avoid counting e+e− pairs, it has a central gap along the vertical

direction. The detector has two signals: (H ×V )1 and (H ×V )2, signaling that

at least one or two charged particles have been detected, respectively.

• OH: This detector (see Fig. 2.19 b) consists of 24 scintillator counters placed in

front of the Outer Electromagnetic Calorimeter. A vertical gap and an aperture

that matches the aperture of M2 allows e+e− pairs to pass through. The OH1

signal guarantees that at least one charged particle with wide opening angle has

been detected.
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Trigger Definition Physics signal

MG1 TR1·TR2·2B·EHI Hadronic trigger
MG2 TR1·TR2·2B·IE2 J/ψ → e+e−

MG3 TR1·TR2·[IM1 + OM1] ·ELO Semi-muonic decays
MG4 TR1·TR2·2B·[IM2 + OM2 + IM1 · OM1] J/ψ → µ+µ−

MG5 TR1·TR2 e+e− pairs (PS)
MG6 TR1·TR2·2B Two-body events (PS)
MG7 TR1·TR2·[IM1 + OM1] One-muon events (PS)

Table 2.7: The logic for the seven Master Gate triggers are shown. Master Gates denoted
(PS) are prescaled and are used for calibration. The term 2B stands for (H × V )2 +
[(H × V )1 ·OH1].

• EHI: This signal comes from the Hadron Calorimeter, and it is used to reject

events with hadronic energy lower than a given threshold.

The hadronic Master Gate requirement is given by the following logical combina-

tion of the five signals:

MG1 = TR1 · TR2 · [(H × V)2 + (H × V)1 · OH1] · EHI

In total there are seven Master Gate triggers, which are summarized in Table 2.7,

where the other individual inputs are:

• ELO: Hadronic energy over a lower threshold than for EHI .

• EIE : Electromagnetic energy over a high threshold.

• IE2: At least two hits in the Inner Electromagnetic Calorimeter.

• IM1: At least one hit in the Inner Muon detector.

• IM2: At least two hits in the Inner Muon detector.

• OM1: At least one hit in the Outer Muon detector.

• OM2: At least two hits in the Outer Muon detector.
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Trigger Definition Physics signal

TRIG1 MG1·EIE-2·MULT4 Hadronic trigger
TRIG2 MG2·(H × V )2 ·EIE J/ψ → e+e−

TRIG4 MG4·IM2 · (H × V )2·!(AM·AMD) J/ψ, inner only
TRIG5 MG5 Prescaled MG5
TRIG6 MG6 Prescaled MG6
TRIG8 MG1 Prescaled MG1
TRIG9 MG4·OH·OM2·MULT2·!(AM·AMD) J/ψ, outer only
TRIG11 MG4·IM1·OM1·MULT1·(H × V )1· IM(E+W) J/ψ, inner/outer

Table 2.8: The logic for different second level trigger that were used during the data
tacking are shown.

2.11.2 Second Level Trigger

The second level trigger uses information from detectors that are in general too

slow to be included in the first level Master Gates. Also for the second level trigger

more complicated logic was used for different physics signals. Some triggers are used for

detector monitoring. The bulk of the data has been collected using the hadronic second

level trigger. The signal used are:

• MULTn: at least n tracks with sufficient number of hits have been detected

by the MWPC.

• AM·AMD: halo muons are vetoed using two arrays placed between the radiator

and the experimental target.

• IM(E+W): Vetoes hits in both halves (west and east) of the inner muon trig-

gers.

• EIE−2: At least two hits above threshold in the Inner Electromagnetic Calorime-

ter

Some second level triggers that were used during the data tracking are shown in

Table 2.8.



54

2.12 Data Acquisition

The Data AcQuisition (DAQ) system has the task of digitizing and recording the

analog signals that come from the detectors and writing the information to tape. Data

from different formats are merged into one stream and the output is recorded on 8 mm

magnetic tapes.

The performance of the FOCUS DAQ was excellent, the events were collected at

a rate of about 30,000–40,000 events per 20 s spill with a typical event size of 4 kB. The

fraction of time spent waiting for the next event (“livetime”) was about 85%–90% and

the readout time was about 35 µs. A more detailed description of the DAQ system is

given in [35]



Chapter 3

The DATA Skims

3.1 Introduction

During the data collection 6.5 billion events were triggered and the data, which

amounts to about 30 TB, was stored on 6000 8 mm “Exabyte” magnetic tapes. In order

to make this raw data manageable for the physics analyses the data were processed and

divided into smaller sets through three steps : “Pass One”, “Skim One” and “Skim

Two”.

Pass One reconstructs the raw data saved on tape by the DAQ system. With

Skim One the reconstructed data is divided into a set of 6 Super–streams corresponding

to broad physics categories. Each Super–stream is divided into multiple Sub–streams

with the Skim Two process. Figure 3.1 is an overview of this three step process, which

is described in more detail in this chapter.

3.2 Pass One

Pass One uses the raw data from the detectors (i.e. the hits in the tracking

detectors, or the energy deposited in the calorimeters) to perform a topological and

kinematical reconstruction of the event: the track direction and momentum, the vertices

coordinates are reconstructed and the particle identification for each track is performed.

The reconstruction techniques are described in detail in the next chapter. During Pass

One D decays called golden modes (D0 → K−π+π−π+, D0 → K−π+ and D+ →
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K−π+π+) were reconstructed with the purpose of monitoring the performance of the

process.

A considerable computing effort was necessary to perform this initial reconstruc-

tion process. Eight computing “farms” were used, for a total of up to 90 computing

nodes. Each farm consists of a server node and ten worker nodes that perform the

reconstruction in parallel. The Fermilab software Cooperative Process Software was

used for the transmission of data and control information among many processes run-

ning on multiple computers. The functioning of each farm is schematically shown in

Fig. 3.2. The data is initially transfered from tape to disk, and read by the server node.

This sends the information to the worker nodes for computation through a high speed

network. Each worker node receives eighty events at the time, performs the compu-

tation, and sends the reconstructed data back to the server, requiring new data. A

separate program transfers the information from disk to tape. The farm consists of

SGI workstations (based on the MIPS R5 000 CPU) and IBM workstations (based on

the IBM/Motorola PowerPC CPU). The average CPU maintained during Pass One was

about 85–90%.

The Pass One process took almost one year, from January 1998 to October 1998.

The larger fraction of computing time was taken by the reconstruction algorithms and

the combination of shower reconstruction and particle identification. At this stage about

10% of the events were discarded due to reconstruction errors (e.g. too many hits) or by

requiring very loose selection cuts (e.g. to have reconstructed at least one track in the

SSD). The output of Pass One consists of 6000 magnetic tapes (one for each input tape)

were the raw data is recorded along with the reconstructed data. In order to maintain

the data flow proceed without delays, the reconstructed calorimetry information was

not written on the output tapes.
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3.3 Skim One

With the Skim One process the output of Pass One was divided into six sets,

called “Super–streams”, each corresponding to one or two broad physics topics. Skim

One was run at two institutions, University of Colorado and Vanderbilt University.

Both institutions used a computer farm with jobs running in parallel. University of

Colorado used Alpha machines, while Vanderbilt used Linux machines. Both computer

clusters had about 4000 MIPS (Millions of Instructions Per Second). The data process-

ing method was similar to Pass One, except that each job reconstructed 40,000 events

instead of 80. A diagram of the process ran at Colorado is shown in Fig. 3.3, the picture

is a good representation also for the Vanderbilt process.

During Skim One the calorimetry reconstruction was again processed, since the

relative reconstructed information was not output in Pass One, and new, improved

routines were run for the Čerenkov identification and for the reconstruction of the

decays Ks → π+π− and Λ0 → pπ−. The Skim One process was run from October 1998

to February 1999, the main limitation in speed deriving from the time necessary for

tape reading and writing. About 50% of the data were retained after Skim One.

3.4 Skim Two

Skim Two is the split of the Super–streams into Sub–streams corresponding to

more specific physics topics. For each Super–stream about 5–12 Sub–streams were

generated. The process was run at five different institutions, each of which “skimmed”

one Super–stream (two for the University of California at Davis), as shown in Table 3.1.

The computing models for the different institutions were all similar to the one for Pass

One. The Skim Two started in January 1999 and was completed by the end of June

1999.

The data for the analysis presented in this thesis comes from the Skim Two Sub–
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Table 3.1: Institutions that run Skim Two and physics topics for the division of each
Super–stream into Sub–streams.

Super Physics Skim2
Stream Topics Institution

1 Semi-leptonic Puerto Rico
2 Topological vertexing and K0

S Illinois
3 Calibration and rare decays CBPF, Brazil
4 Baryons Fermilab
5 Diffractive (light quark states) California, Davis
6 Hadronic meson decays California, Davis

stream FSK, where events with at least one K0
Swere selected. The FSK Sub–stream

was produced at the University of Illinois at Urbana–Champaign ant it consists of 212

magnetic tapes (corresponding to about 1 TB of data). I performed two consecutive

skims to reduce this data to about 70 GB; this data selection is described in Chapter 5.



Chapter 4

Data Reconstruction

In this chapter the techniques used for transforming the raw information collected

in the detectors into data records that can be used for physics analysis will be described.

We explain the algorithms for reconstructing charged particles in the spectrometer, we

describe two methods of determining the vertices position, we also explain the recon-

struction of hyperons and neutral kaons and we discuss different particle identification

methods (using the Čerenkov counters, the muon systems, and the calorimeters).

4.1 Tracking

Tracking (or track finding) is performed using pulse height in strips above thresh-

old in the SSD and using wires which are on in the MWPC . Initially, the reconstruction

is performed separately for the two systems, then a “linking” procedure combines seg-

ments in the two systems. Linked segments which have a good confidence level for the

hypothesis of belonging to the same particle are assigned to a track.

4.1.1 SSD Tracking

Tracking in the SSD system is performed in a three–step process: first clusters of

hits are formed, then the projections in the three measured directions are found, and

then the projections are combined to construct the track. The track parameters are the

slope and intercept in the coordinate system of the granite structure that supports the
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experimental target.

The hit clusters are formed using hits from up to three adjacent strips. By

comparing the total collected charge (given by the sum of all channels in the cluster) to

the number expected from a Minimum Ionizing Particle (MIP) it is possible to determine

if a cluster was formed by one or two tracks. The two track case is most likely an

e+e− pair event (the two tracks in this event have very small separation compared to

the detector resolution).

For each of the three views, the clusters are used to find the projection in the

measured direction. The projection in a given direction is found from the fit to a straight

line of the clusters in that view (taking all possible combinations). A combination is

kept if χ2/(d.o.f.) < 3 (d.o.f. being the number of degrees of freedom). Clusters can

be shared by 3–plane projections and in the first plane of 4–plane projections. The

projection must be found in at least three of the four planes for each view.

All the possible combinations of three projections (one for each view) are used to

form a track. A loose requirement for the fit is applied, χ2/(d.o.f.) < 8. An arbitration

based on the best χ2/(d.o.f.) is applied for shared projections between tracks. When

groups of tracks have almost identical parameters they are arbitrated to a single track.

The resolution on the direction is given by the detector resolution and by Multiple

Coulomb Scattering which depends on the particle momentum. The resolution in the

horizontal and vertical direction for tracks reconstructed in the central part of the

SSD planes is:

σx = 11.0 µm

√

1 +

(
17.5 GeV/c

p

)2

σy = 7.7 µm

√

1 +

(
25.0 GeV/c

p

)2

In the outer region, where the strip pitch is larger, the resolution is twice as

large. The resolution is better in the y direction because all the three views provide

information in this direction, while only two provide information on the x direction.
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Once the SSD track is formed, its direction is extrapolated upstream for a refit

using hits in the TSSD system. Two refits of the track are performed. The first refit

uses the hits in TSSD2 that lie within a three sigma radius of the track (which usually

corresponds to about 1–2 strips). If the first refit is successful (i.e. matching hits are

found), a second refit is performed. This second refit uses hits in TSSD1 in addition to

the TSSD2 hits used in the first refit. The information on the track parameters is saved

for the three fits (using only the information from the SSD system, using also TSSD2,

and using also TSS1 and TSSD2).

4.1.2 PWD Tracking

Track reconstruction in the MWPC system is based, like the SSD system, in

finding the single view projections and extracting the track parameters (slope and in-

tercept) from a fit to a straight line. There are three stations between the magnets and

two stations downstream the magnet M2.

First, the projections along the x, y, u, and v views are formed independently.

The projections are then used to reconstruct the track in three dimensions. For the

tracks that travel through M2, the momentum is included as a fit parameter, and a first

estimate for its value is found. The fit includes magnetic corrections for the fringe field

and for the spatial variation of the magnetic field inside the magnet.

The reconstructed track must have hits in P0 and in at least two other chambers.

The maximum number of missed hits is four, with a limit of two missing hits per

plane. For events with a large number of hits the number of reconstructed tracks can

be very high. To reject events where such track cluttering occurs, a maximum number

of tracks per event of 30 is required (about 3.5% of the events are discarded by this

requirement). Tracks are divided into two categories, the “stub” type, when the track

has been reconstructed in the first 3 MWPC stations, and the track type, when the

track has been reconstructed in all 5 MWPC stations. An additional type with very
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poor resolution is given by tracks that are outside the geometrical acceptance of P2.

The unused hits in the x direction of P0 and P1 are matched to the extrapolation of

SSD tracks, then the projections in the other views are found. This category is required

to have hits in all four views if they extend only to P0, or at in least three views if they

extend to P1.

4.1.3 Linking

The linking procedure provides useful information for the physics analyses since

long lived charged particles (µ±, e±, π±, K±) generally travel through both the SSD and

MWPC systems. A good requirement for these particles is to have “linked” tracks. A

stub linking to an SSD track allows for a momentum measurement from the bend angle

in M1. When selecting events with a muon in the final state, the comparison of the

two momentum measurements in M1 and M2 helps reject background events where the

muon results from a pion that decayed between M1 and M2.

The links are formed by extrapolating SSD and MWPC tracks to the center of

M1 and by requiring consistency for the intercepts and the slopes. A global fit using

the hypothesis that the two track segments are the same track is performed from the

hits in the SSD and MWPC systems, and a loose requirement on χ2/(d.o.f.) is applied.

For each SSD track a maximum of two MWPC links are allowed (the links arbitration

is based on the best χ2/(d.o.f.)). An e+e− pair is normally reconstructed as a “double–

link” track, since the two tracks are not resolvable in the SSD system, but they become

separated after the magnets.

4.1.4 Momentum Measurement

Depending on the topology of the track, either the bend angle in M1 (linked

stubs or linked 4–plane tracks) or the bend angle in M2 (5–chamber tracks) is used for

the momentum measurement. The algorithms for the two categories are similar: the
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particle trajectory inside the magnet is determined from the known magnetic field and

the track parameters at both ends of the magnet. An iterative fit is performed where

the momentum value and track parameters are free to float, one at the time and starting

from the momentum. The fit ends when improved and stable values are found for both

the momentum and track parameters.

The momentum resolution is dominated by Multiple Coulomb Scattering at low

momentum and by the uncertainty on the track direction at high momentum. The

resolution on the momentum measured in M1 and in M2 are given by:

(
σp

p

)

M1

= 0.034 × p

100 GeV/c

√

1 +

(
17 GeV/c

p

)2

(
σp

p

)

M2

= 0.014 × p

100 GeV/c

√

1 +

(
23 GeV/c

p

)2

A rough momentum estimate is also possible for unlinked stub–type tracks: the x

projection is extrapolated to the target region and the closest vertex from this direction

is assumed to be the origin of the track. If no vertex is found, the target center is taken.

By knowledge of the origin point and the direction in the bend view after the magnet

a low precision estimate of the momentum is made.

4.2 Vertexing

There are two primary vertex finding (or vertexing) algorithms, DVFREE and

DVNUCL. The first method is used when no a priori information on the vertex location

is available. The DVNUCL method is used in physics analyses where the direction

of the charm particle is known (namely when all the daughter particles momenta are

measured) and the charm particle flight direction is used as a seed track. For the decay

mode studied in this thesis we use DVFREE, since, due to the undetected neutrino in

the final state, we do not have a seed track.
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4.2.1 DVFREE

The DVFREE algorithm begins with taking two SSD tracks (linked or not) and

forming a χ2 for the hypothesis that they originate from the same vertex. If χ2 > 1,

the track combination is rejected and we search for a new combination. If χ2 < 1, other

tracks are added one at the time so long as χ2 < 1. For N tracks forming the vertex,

the χ2 is given by:

χ2 =

N∑

i=1

(
x− (xi + x′iz)

σxi

)2

+

(
y − (yi + y′iz)

σyi

)2

(4.1)

where x, y, z are the vertex coordinates, xi, yi, x
′
i, y

′
i, σxi

and σyi
are the track

intercepts, slopes, and errors. The vertex finding algorithm is repeated until all possible

combinations of tracks forming a vertex with χ2 < 1 are formed. If the vertex is

reconstructed upstream of TSSD1 (TSSD2), the SSD tracks are replaced with their

refit tracks using the information from TSSD1 (TSSD1 and TSSD2).

For specific physics analyses the user can decide to exclude some tracks from the

vertexing. For instance, in reconstructing the decay mode D0 → K0
S(π+π−)π−µ+ν ,

we have excluded the muon and the pion tracks. Also each pion from the K0
S decay is

removed, if it is reconstructed as a linked track. Vertexing is performed during the initial

Pass One as the vertex is needed for finding other objects and for determining momenta

(as seen in the previous section). This reconstruction is done without assuming any

particular decay in the event, so it is performed using DVFREE. More than one vertex

is usually found. Different criteria are used to determine the so called “event vertex”.

Normally either the highest track multiplicity vertex or the most upstream vertex is

chosen as the primary vertex.

4.2.2 DVNUCL

DVNUCL is used when the charm decay has been fully reconstructed and a flight

direction (seed track) of the charm particle is known. A least squares method similar to
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Figure 4.1: Different topologies for the decay of Vees are shown. The corresponding Vee
type is indicated in the picture.

the one used in DVFREE is used to form a vertex, the difference with DVFREE being

that the tracks must be verticized with the seed track. The tracks that are used to

find the seed track are automatically excluded from the process, and the user can also

exclude other tracks. DVNUCL yields a much better resolution than DVFREE.

4.3 Vees, Kinks, Ξ−’s and Ω−’s Reconstruction

Charm particles normally decay into final states that contain a strange particle

(like Ks, Λ0, Σ+, Σ−, Ξ− and Ω−). Different reconstruction techniques, which are

described in detail in Reference [36], are used depending on the decay topology.

4.3.1 Vees

Ks and Λ0 are reconstructed from the charged decays Ks → π+π− (BR=68.6%)

and Λ0 → pπ− (63.9%). For both modes the reconstruction algorithm is based on

finding two oppositely charged tracks that make a good vertex. Because the geometry

of the decay resembles a “V”, these particles are normally called “Vees”. Due to the

relatively long lifetime of these particles (τ ∼ 10−10 s), they can travel several meters
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before decaying, and the decay range in the spectrometer is quite large. Fig. 4.1 shows

the different categories that are reconstructed in FOCUS. We will describe briefly the

algorithms that have been implemented for all these categories. In all cases the invariant

mass of two oppositely charged tracks is computed first by assigning the π mass to

both tracks to test the Ks hypothesis, and then by assigning the proton mass to the

higher momentum particle to test the Λ0 hypothesis. The selection cuts for the initial

reconstruction are quite loose to allow different degrees of purity of the signal for different

physics analyses.

Although reconstruction algorithms have been implemented for all Vee types, not

all categories are used for the analyses. Several analyses use the SSD, M1, and One-

link SSD Vees. For the analysis presented in this thesis we use the SSD and M1 Vee

categories. The RECON and P34 Vees were implemented for E687, but they are not used

in FOCUS. Due to a reduction in the beam energy, long–lived decays are less frequent,

therefore RECON and P34 Vees are less frequent. Moreover, the number of fake RECON

Vees increased in FOCUS compared to E687 due to the higher luminosity, which results

in more noise in the chambers. MIC Vees are not used for FOCUS analyses because

they require excessive computing time. MIC Vees are first found as M1 Vees, and then

a search is performed for the remaining hits in the SSD . Singly–linked MWPC Vees

are only used to reconstruct the decays Ξ− → Λ0π− and Ω− → Λ0K− as described in

section 4.3.3.

As will be explained in the next paragraphs, it is often necessary to assume

that the Vee has been produced at the primary vertex of the event, which can be a

rather rough approximation. A “refit” procedure has been developed to improve the

resolution on the mass and direction of the Vee. In this method, which is used at the

physics analysis stage, the Vee is constrained to come from the charm decay vertex.

SSD Vees SSD Vees are normally K0
S and Λ0 particles that decay upstream of

the second SSD station. They are reconstructed from oppositely charged, linked tracks
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that originate from the same vertex. The Vee decay vertex is required to be downstream

of the primary vertex of the event. If matching hits are found in the TSSD system, they

are included in the track definition. Only hits downstream of the Vee decay vertex

are used. Since the Vee normally has low momentum, the resolution (σm) on the di–

pion mass is excellent, σm is about 3.6 MeV and 1.6 MeV for K0
S and Λ0, respectively.

SSD Vees have excellent resolution on the Vee direction. This resolution is comparable

to that of two combined tracks.

M1 Vees K0
S and Λ0 particles that decay downstream of the last SSD station

and upstream of the first MWPC station are called M1 Vees. The two pion candidate

tracks must be unlinked MWPC tracks. Depending on the nature of the two tracks, M1

Vees can be of the “track–track”, “stub–stub” or “track–stub” types. For each of these

sub–categories the decay vertex in the non–bend xz plane is found. An iterative fit is

used to determine the y coordinate of the Vee decay vertex. For track–stub types this

method allows a determination of the momentum of the stub daughter. For stub–stub

types it is necessary to constrain the Vee to originate at the primary vertex of the event.

With this constraint it is possible to evaluate the track momenta. A global fit using

the full covariance matrix of the tracks and including multiple Coulomb scattering is

performed to provide a better estimate of the Vee decay vertex and the Vee momentum.

About 70% of all Vees belong to the M1 category. The mass and vertex resolution are not

as good as for the SSD type and the resolution varies with the angle between the normal

to the Vee decay plane and the magnetic field direction. The di–pion mass distribution

has long, non–Gaussian tails. For this reason the K0
S and Λ0 candidates are selected not

based on the reconstructed mass, but based on the “normalized reconstructed mass”,

which is the difference between the reconstructed mass and the nominal value divided

by the calculated mass error σm. The normalized mass has a Gaussian distribution.

The default requirement for M1 Vees is that the absolute value of the normalized mass

is less than 5 (which corresponds to requiring that the reconstructed mass lies within
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five standard deviations from the nominal mass). The average resolution σm varies from

5.9 MeV for track–track Vees to 6.6 MeV for stub–stub Vees.

RECON Vees RECON Vees are K0
S and Λ0 particles that decay between P0

and P2. These high momentum Vees are not very prevalent in FOCUS, and they are

not used for the physics analyses. The two pion candidates are reconstructed using the

hits in P1, P2, P3, and P4 that have not been used in the global track finding process,

which uses searches for hits in all the chambers. Depending on which MWPC stations

have been used for the reconstruction, the track can be of the P1234, P123, P234, or

P23 type. First, vertices in the xz plane using the projections of two tracks at a time

are formed. Tracks that do not verticize with any other track are discarded. Then,

projections in the bend views (U, V, and Y) are formed and matched to the projection

on the xz planes to form tracks in three dimensions. Finally, tracks are combined two

at the time to form the Vee candidate. The Vee decay vertex coordinates and the tracks

parameters are fit parameters.

P34 Vees P34 Vees are the highest momentum Vees of all categories that are

reconstructed. They decay between P3 and P4 in the magnetic field of M2. The pion

candidates are formed from hits in P3 and P4 that have not been used in the global

track finding. The efficiency for this category is low, since hits in the two planes can be

erroneously assigned to other tracks. Also for this category, track projections are formed

in the xz plane, and projections are combined pairwise. A projection is discarded if no

match is found for it. Projections in the bend directions are found and combined with

xz plane projections to make tracks in space. The Vee vector is constrained to the event

primary vertex in order to find the momenta of the pion candidates.

One–link SSD Vees The One–link SSD Vees are K0
S and Λ0 particles that

decay before the second SSD station with one of the pions not entering the acceptance

of P0. These Vees are reconstructed using a linked track and an unlinked SSD track.

The primary vertex of the events is used as a constraint for the production point of the
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Figure 4.2: Di–pion invariant mass distributions for K0
S candidates for different cate-

gories. For the analysis presented in this thesis we use the M1 Track-Track, M1 Stub–
Stub, M1 Track–Stub and SSD categories. The SSD, MIC, and One–Link categories
have the best mass resolution.
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Vee. The line connecting secondary and primary vertices must lie in the same plane

as the Vee decay plane. These constraints allow for us to determine the momentum

of the unlinked daughter. The primary and secondary vertices are required to have a

significance of separation greater than 10. This separation is calculated as the distance

between the two vertices over the error on such distance (`/σ`). The mass resolution

for this type is about 4.7 MeV.

MIC Vees MIC Vees are K0′
S s and Λ0′ s that decay between the second

SSD and the last SSD station. Unlinked MWPC tracks are matched to unused hits

in the SSD planes to form the pion candidate tracks. These tracks are then used to

form the Vee decay vertex. The Distance of Closest Approach (DCA) is required to

be smaller than a certain value, and it is used for arbitration in case two Vees share a

common track. The resolution on the K0
S mass is 4.4 MeV.

Single–linked MWPC Vees Single-linked MWPC Vees decay between the

SSD detector and P0 (like for M1 Vees), but they are formed by a linked track and an

unlinked track. Their reconstruction algorithm is the same as for M1 Vees, and they

are divided in the same three sub–categories. The K0
S sample has very high background

contamination for this type, and it has never been used. This category is very important

for Λ0′ s, when the Vee is produced in the decays of Ξ−’s and Ω−’s.

Fig. 4.2 shows the invariant mass distribution of the two daughter pions for the

six Vee types that are used in physics analyses: the three M1 sub–categories, the SSD,

MIC and One–link types. The category M1 is the most copious, but the other three

types have the best mass resolution.

4.3.2 Kink Reconstruction

Charged particles that decay into a neutral and a charged particle are called

“Kinks” from the geometry of the reconstructed decay. The neutral particle goes un-

detected and a charged track that makes a vertex with another charged track having
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Figure 4.3: Schematic for a “Kink” decay. The neutral particle is not reconstructed.

a different direction is found, see Fig. 4.3. The FOCUS Kink algorithm is used for

the reconstruction of Σ hyperons via the decays Σ+ → pπ0 (BR=51.6%), Σ+ → nπ+

(BR=48.3%), and Σ− → nπ− (BR=99.8%).

The algorithm starts by finding an SSD track that points to the M1 aperture and

a matching MWPC track that points back to the M1 aperture. Different categories are

found depending on where the Σ decay occurs and on the nature of the MWPC track.

The match is found by verticizing the two tracks in the x direction. For 5–chamber

tracks the determination of the Σ momentum depends on the position of the decay

vertex. If the vertex is upstream of M1, the Σ mass is assigned to the SSD track, and

its momentum is determined up to a two–fold ambiguity. Different algorithms have been

implemented for the arbitration, depending on the particular physics analysis. If the

vertex occurs in the magnet, both the SSD and the MWPC tracks are traced through

the magnetic field and the Σ momentum is determined by minimizing the distance of

closest approach of the two particles. The 3–chamber case is only reconstructed for

decays inside the magnet. First the x and z intersection of the two tracks is found, then

the y value is determined from the SSD track parameters at the z of the intersection.

Also in this case the nominal Σ mass is assigned to the SSD track.

Backgrounds with similar topologies are reduced by requiring Čerenkov identi-
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fication for the proton, and finding a matching neutron from the hadron calorimeter

shower reconstruction.

4.3.3 Ξ− and Ω− Reconstruction

The hyperons Ξ− and Ω− are reconstructed from the decays Ξ− → Λ0π− (BR

99.9%) and Ω− → Λ0K− (BR=67.8%). Most of the events are fully reconstructed from

a Λ0 candidate and an unlinked track. If no Λ0 is found, or if the vertex between the

Vee and the track is downstream of the Vee vertex, the hyperon is reconstructed as a

MULTIVEE, where three unlinked tracks are used. If no MULTIVEE is found, then

the hyperon is reconstructed as a Kink (to recover the events where the Λ0 decays to

nπ0). We will refer to both hyperons Ξ− and Ω− as “cascades” when no distinction is

necessary.

Fully reconstructed cascades can be of two types depending on whether the decay

is upstream (Type 1) or downstream (Type 2) of the SSD system. In both cases the

reconstruction algorithm starts by finding a Vee that passes requirements for being a Λ0.

The main requirements are that the reconstructed mass lies within a certain window of

the nominal mass and that Čerenkov identification on the highest momentum track in

the Λ0 be consistent with a proton.

For Type 1 cascades, the decay occurs upstream of the SSD and the Λ0 is paired to

a linked track. The two objects are required to make a good vertex, and that the vertex

be downstream of the event vertex. The Ξ− (Ω−) mass is reconstructed by assigning

the π− (K−) mass to the track.

For Type 2 cascades, since the cascade travels through the SSD system, its track

can be reconstructed. For this category the Λ0 is paired with an unlinked MWPC track.

The vertex (with good confidence level) is found and the direction given by the sum of

the momenta is matched to an unlinked SSD track.
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Figure 4.4: Decay schematic for the two types of fully reconstructed cascades (Ξ− or
Ω−). Type 1 decays upstream of the SSD system, and its Ξ− track is not reconstructed.
Type 2 decays downstream of the last SSD station, and its Ξ−track is reconstructed.



77

4.4 Electromagnetic Shower Reconstruction

The reconstruction of electromagnetic showers is used for identifying electrons

and for the reconstruction of neutral pions. For both inner and outer electromagnetic

calorimeters the algorithm is based on forming clusters of deposited energy. In FOCUS

electrons are produced at very high energies compared to their mass. Thus, the energy

of a track measured in the electromagnetic calorimeters is used to identify it as an

electron by requiring the ratio E/p to be close to unity.

4.5 Inner Electromagnetic Calorimeter Shower Reconstruction

In the Inner Electromagnetic calorimeter as many as twenty blocks can have

deposited energy from an interacting particle. The largest fraction of energy, however,

is normally deposited in only nine blocks. For this reason, each energy cluster is found

using only nine blocks. First, the ADC counts from each block are converted into

energy values (each block has its own conversion factor which varies over time). Next,

the highest energy block is found and the eight blocks surrounding it are grouped into

a cluster. The energy weighted average of the blocks coordinates (xw,yw) are found, for

instance for the x coordinate:

xw =

∑9
b=1 xbEb

∑9
b=1Eb

where block x coordinate and energy are labeled b. An improved cluster set of coor-

dinates (xc, yc) is found following the procedure described in Reference [37]. The xc

coordinate (and similarly for the yc coordinate) is given by:

xc = 0.76 Sinh−1

[
xw − xb1

S/2
Sinh

(
S/2

0.76

)]

+ xb1

where xb1 is the x coordinate of the central block in the cluster and S is the dimension

of the block. The process is repeated until all possible clusters are formed. Once a block
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is assigned to a cluster, it cannot be used again.

For electron reconstruction each cluster is matched to a MWPC track. Only

tracks within 6 cm from the cluster are associated with it. In principle, multiple tracks

can be associated to the same cluster and vice versa, but this happens rarely due to this

requirement. Calorimeter energy resolution is normally expressed as a constant term

plus a term that improves with energy like 1/
√
E. In FOCUS the average electron energy

is so large that it is difficult to evaluate the energy dependent term. The constant term

dominates the energy resolution, which is approximately 5%. The average resolution

between the track and the cluster is about 6 mm.

Fig. 4.5 shows the E/p distribution for electron candidates for tighter require-

ments on the parameter IEID. This identification parameter provides information on

the E/p ratio (IEID≥10 corresponds to E/p in the window 0.8–1.25) and on the con-

firmation of the electron hypothesis from the Čerenkov system.

4.6 Outer Electromagnetic Calorimeter Shower Reconstruction

Lower momentum photons and electrons are also reconstructed from the energy

deposited in the Outer Electromagnetic Calorimeter. In this detector energy clusters

are formed, the averaged position is determined, and matching MWPC tracks (in this

case stub–type tracks) are found. The energy of the cluster is found by summing the

energy of the counters associated with it. The energy resolution for the OE is about

3%+15%/
√

E (GeV/c2), while the position resolution varies from 9 mm at 3 GeV/c2 to

3 mm at 10 GeV/c2.

4.6.0.1 π0 Reconstruction

Clusters with no associated tracks are called “neutral” clusters and can be used for

neutral pion reconstruction. The neutral pion is reconstructed from the decay π0 → γγ,

which is assumed to decay at the center of the target. Cluster pairs are a candidates
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Figure 4.5: E/p distribution for electron candidates. The energy is measured in the
Inner Electromagnetic calorimeter, the momentum is measured from the bend angle in
the magnets.
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for the two daughter photons. From the energy of the clusters the photon momenta

are found and the pion mass is calculated. The two photons can be reconstructed in

either the same calorimeter or in two different ones, accordingly there are three possible

categories for the reconstructed pion: IE–IE, OE–OE, or IE–OE.

4.7 Neutral Hadron Shower Reconstruction

The reconstruction of neutral hadrons in the HC is used to find confirming neu-

trons for the Kink reconstruction. Clusters in the HC are associated with neutral clusters

in the Inner Electromagnetic calorimeter, since approximately 80% of the hadrons that

travel through this detector undergo a nuclear interaction in the material and produce

a “pre–shower”. The total energy of the hadron is given by the sum of the energy of the

two clusters reconstructed in the two detectors. The resolution on the energy is found

to be 0.86% + 85%/
√
E.

4.8 Čerenkov Identification

Čerenkov identification of electrons, protons, charged pions and kaons is per-

formed using the CITADL [30] algorithm (Čerenkov Identification of Tracks by an Al-

gorithm using Digital Likelihood). While the Čerenkov hardware is essentially the same

as the previous experiment E687, the identification software is a great improvement

upon the one used in E687, LOGIC.

For each charged track that has been reconstructed in the MWPC system, the

CITADL algorithm builds a log–likelihood variable Wα for the four hypotheses that the

track is left by a particle α = e, π, K, p. The on/off status of each cell is used, rather

than the pulse height. For a particle of momentum p, one can calculate the β = 1 cone

for each particle hypothesis (i.e. for each hypothesis on the mass of the particle, to

which corresponds a β value). For each cell within the cone let µ be the number of

expected photoelectrons and PON (POFF ) the Poisson probability of firing (not firing)
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is:

PON = 1 − e−µ (4.2)

POFF = e−µ (4.3)

The log–likelihood variable for the hypothesis α is given by:

Wα = −2
∑

j

logPj (4.4)

where the sum is over the cells within the β = 1 cone and the probability Pj has two

possible values: Pj = PON if the cell is ON and Pj = POFF if the cell is OFF (for this

reason it is called a “digital” likelihood). Cells that are inside the Čerenkov cone of

more than one track are excluded from the sum.

The assumption so far is that a cell fires only in response to Čerenkov radiation.

The CITADL algorithm in fact takes into account random firing. The probability for a

cell to fire for reasons other than Čerenkov light has been calculated from the rate of

firing in cells outside the β = 1 cone of any track in the event. This probability is higher

for central cells, that are close to the beam axis. Fig. 4.6 shows a plot of the accidental

rate versus cell number in C2 for a small fraction of data (corresponding to a single run

of the experiment). The firing probability for a given cell therefore given by:

PON = PRND + (1 − e−µ) − PRND · (1 − e−µ) (4.5)

where PRND is the random firing probability for that cell. POFF is evaluated using the

obvious relation POFF = 1 − PON .

Particle identification is performed by comparing the W , or “Wob”, variable

values for each hypothesis. For instance when identifying a pion we normally require

that the pion hypothesis is either the best hypothesis or does not differ by much from

the best hypothesis. This is achieved by requiring min(W ) −Wπ > −n, where n is a

positive value, usually between 3 and 6. Background contamination from misidentifying
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Figure 4.6: Percentage of accidental firing rate versus cell number in C2. For cells
located near the beam axis the accidental rate is almost 40%, while it is only a few
percent for the other cells.
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a kaon as a pion is rejected by requiring that the pion hypothesis is favored over the

kaon hypothesis by a certain number N of likelihoods units, i.e. W (K) −W (π) > N .

The standard kaon identification is similarly performed by requiring W (π) −W (K) to

be greater than a certain value.

The Čerenkov identification performance was tested using high statistics channels.

The decay Ks → π+π− was used for pion identification studies, the decay Λ → pπ− for

proton and low momentum pion identification studies, and the decay Φ → K−K+ for

kaon identification studies. The performance was investigated on a run by run basis.

The Ks → π+π−, with about 15,000 events per run, was used for a photoelectron recali-

bration of almost all 300 cells. Also the golden mode charm decays (D0 → K−π+π−π+,

D0 → K−π+, andD+ → K−π+π+) were used for monitoring the CITADL performance.

Figure 4.7 shows the effectiveness of Čerenkov cuts in reducing background contami-

nation in the sample D0 → K−π−π+π+. The signal with no Čerenkov requirement is

compared to the signal with increasing Wπ −WK values for the kaon identification.

The CITADL algorithm provides excellent particle identification for FOCUS. Two

features of CITADL are the reason for the great improvement over LOGIC from E687.

The old algorithm based the identification on the overall firing status of C1, C2, and C3,

returning a single identification indicating whether or not the track was consistent with

the four hypotheses (electron, pion, kaon and proton). This method is much less flexible

than the log–likelihood–based method of CITADL. The second feature that provides a

great improvement is the inclusion of random firing in the expected Čerenkov radiation

pattern.

4.9 Muon Reconstruction

Muons are reconstructed from matching MWPC tracks to hits in the inner or

outer muon systems. A confidence level for the hypothesis that the track belongs to a

muon is determined by fitting the track to the hits. At the Skim 1 level, muon candidates



84

Figure 4.7: Invariant mass distribution M(K−π−π+π+) for the decay D0 →
K−π−π+π+ for different kaon identification requirements. From top to bottom: no
requirements; Wπ − WK > 0; Wπ − WK > 2; Wπ − WK > 2 and WK − Wπ > −2
for the pion candidates. The ratio of signal events over background events increases
dramatically. The plot is semilogarithmic.
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A

B

Figure 4.8: A schematic for the importance of including multiple Coulomb scattering
effects in the confidence level evaluation. Solid lines indicate the actual trajectory. A is a
real muon that leaves the hits indicated with crosses, B is absorbed in the filter. Dashed
lines indicate the track extrapolation without including multiple Coulomb scattering
effects.

are required to have a confidence level greater than 0.01%. For physics analyses, the

requirement is normally tighter.

4.9.1 Inner Muons Reconstruction

As seen in section 2.10, the inner muon detector consists of three scintillating

hodoscopes with two planes each. The hits recorded in the six planes are used to

construct a χ2 for the hypothesis for a track being a muon as follows:

χ2 =

6∑

i=1

6∑

j=1

C−1
ij (ti −Xi)(tj −Xj) (4.6)

where the sum ranges over the six planes, Xi is the coordinate of the hit recorded

on the ith plane, ti is the coordinate of the track extrapolation to the ith plane, and

C−1
ij is the inverse of the coordinate covariant matrix. The effects of multiple Coulomb

scattering in the filters are included in the calculation. Fig. 4.8 shows how the inclusion

of these effects is crucial in rejecting spurious tracks that by accident might match the

hits better than the real muon that produced them. In the figure solid lines indicate

the actual particle trajectory of a real muon (A) which leaves the hits indicated with

crosses, and another particle (B) that is absorbed in the filter. Dashed lines indicate the

trajectory extrapolation without including multiple Coulomb scattering effects. Due to
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multiple Coulomb scattering the hits do not lie along the extrapolated trajectory of

the muon. In fact in this example they provide a better match to the spurious track.

When multiple Coulomb scattering effects are included the confidence level is better for

the trajectory of A, as a match between the hits and the trajectory of B would require

large scattering angles. In the muon algorithm the ti coordinates are calculated with

a straight line extrapolation and the multiple Coulomb scattering effects are included

in the covariant matrix by evaluating, based on the track momentum, the range were

hits are expected considering multiple Coulomb scattering. The errors are dominated

by multiple Coulomb scattering at low momentum and by the granularity of the planes

at high momentum. The most upstream hit recorded is assigned a higher weight than

the other hits.

Muon candidates are required to have hits in at least four out of the six hodoscope

planes. For tracks with momentum below 10 GeV/c, the requirement is only two planes

because lower momentum muons can be absorbed in the filters. For a low momentum

track, hits are searched over a larger area, therefore it is easier to find a good confidence

level. Normally, a minimum value for the muon candidate momentum is required to

separate signal from background. We investigate how likely it is that the muon candidate

is uniquely responsible for the hits used for the fit. To do this, all MWPC tracks are fit

to the set of hits used for the muon candidate, and the two best confidence levels from

these fits are saved. This information on the isolation from other tracks can be used in

physics analyses to reject background.

The efficiency of the scintillating hodoscopes has been carefully studied using the

muon halo in the beam. These studies report that the efficiency of the Inner Muon

arrays is greater than 99%. Golden mode D decays have been used for misidentification

studies as a function of the track momentum. For momenta greater than 10 GeV/c, the

proton misidentification rate is less than 0.1%, while the pion misidentification rate is

about 1%. Most of the pion contamination derives from the decay π± → µ±ν, where
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Figure 4.9: Kaon and pion misidentification rate of inner muons as a function of the track
momentum. The data is compared to a zero noise Monte Carlo simulation (pilemu=0,
where pilemu is the Poisson average of halo muons in each event) and a Monte Carlo
simulation with much higher noise than in normal charm events (pilemu=0.5).
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the muon direction is very close to the pion direction. Fig. 4.9 shows the kaon and pion

misidentification rate of inner muons as a function of the track momentum. The data

results are compared to two simulations, a zero noise Monte Carlo and one with a muon

halo rate much higher than it is present in typical charm data.

4.9.2 Outer Muons Reconstruction

The Outer Muon system muons are reconstructed from fitting MWPC tracks to

hits collected in the detector. In this case the fit is complicated by the magnetic field

in the filter M2 that deflects the charged tracks. This deflection is accounted for by

tracing the muons through the magnetic field. Multiple Coulomb scattering in the M2

iron and in the Outer Electromagnetic calorimeters is included in the tracing of the

track. Particles that enter the Outer Muon system have lower momenta and therefore

a more detailed treatment of energy loss is performed. The efficiency is good for muons

above 4 GeV/c. Below 4 GeV/c muons are normally absorbed in the filters and do not

contribute to the sample.



Chapter 5

Event Selection

As seen before, cc pairs are produced from the interaction of a photon beam on a

BeO target. The two quarks hadronize into charmed mesons and baryons which can be

reconstructed through the decay into long lived particles. In this chapter we describe

the selection of the D0 → K0π−µ+ν and D0 → K0π−π+ decays. The D0 meson is

reconstructed from the decay D∗+ → D0π+. The K0 is reconstructed as a K0
S from

the decay K0
S → π+π−.

The analysis uses data from one of the Sub–streams of Skim 2; the 212 FSK

tapes that contain events with at least one reconstructed K0
S → π+π− candidate. We

reduced the 1 TB of data on the FSK tapes to approximately 70 GB in two steps

that will be called Selection–1 and Selection–2. After describing the Selection–1 and

Selection–2 processes, we will explain the event selection for the specific decays D0 →

K0π−µ+ν (signal mode) and D0 → K0π−π+ (normalization mode).

Since a Monte Carlo simulation is used to compute the selection cuts efficiency, a

systematic bias due to poor simulation of the detector performance could be introduced.

We choose to normalize to a mode with a very similar topology, and we apply the same

selection cuts (whenever possible) as the semileptonic mode, in order to minimize such

possible bias. The cuts are optimized for the semileptonic mode.
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5.1 Selection–1

The Selection–1 process reduced the data to almost 300 GB. This process selects

the decays D0 → Ksπ
−`+ν`, D

0 → Ksπ
−π+, and D+ → Ksπ

−π+π+ (for other physics

analyses that are being performed in FOCUS). An event is required to pass the hadronic

trigger and to have at least four tracks reconstructed in the SSD system. As seen in

section 2.11, the hadronic trigger requires signals of TR1 and TR2 to be in coincidence,

that the energy deposited in the hadron calorimeter is above a certain threshold, and

that at least two charged particles have been detected in the H × V array or that at

least one charged particle has been detected in the H×V array and one charged particle

has been detected in the OH array.

Only events where the candidate K0
S is an M1 or SSD type Vee are retained. For

the remainder of the thesis we will refer to M1 stub–stub, M1 stub–track, M1 track-

track and SSD Vees as types 1, 4, 5, and 9, respectively. The invariant mass M(π+π−)

is required to be within three mass errors σm of the nominal K0
Smass.

Leptons and pions from the D meson are selected by requiring they are linked and

have a confidence level less than 3% for being produced at zero angle with respect to

the beam direction. This requirement eliminates most of the e+e− pair contamination

from the incident photon beam. All the pions have a loose identification requirement of

picon > −6, where picon = min(Wobs) −Wobs(π).

For the semileptonic mode, both muon and electron candidates are kept in the

two categories of outer and inner tracks 1 . Inner electrons must have P>10 GeV/c,

have hits reconstructed in all 5 MWPC stations, and have the quality parameter IEID

between 10 and 13. This quality parameter combines the information from the Inner

Electromagnetic calorimeter with the information from the Čerenkov counters. An IEID

1 We remind the reader that inner (outer) type tracks are tracks that enter (do not enter) the
acceptance of the second magnet M2. Inner type particles are produced at smaller angles with respect
to the beam direction compared to outer type, and have larger momentum.
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greater than or equal to 10 corresponds to tracks with E/p in the window 0.8 – 1.25. An

IEID between 11 and 13 means that the Čerenkov identification algorithm returns a good

confidence level for the electron hypothesis. Outer electrons must have P>5 GeV/c,

have hits reconstructed in the first 3 MWPC stations, have 0.8 < E/P< 1.25, and

have the quality parameter OESCDST > 0.5. This parameter is used to discriminate

between pions and electrons. At this stage muon candidates are simply required to have

C.L.(µ) >0.1% as calculated with either the inner or the outer muon system.

A decay vertex for the D is formed from the pion tracks (or the pion and the

lepton track in the semileptonic case) that pass the identification cuts. The K0
S object

is used to form the vertex only if it is type 9, since for the other cases its direction is

known with relatively low precision. The track combination is kept if the vertex C.L. is

greater than 1% and if the z coordinate lies in the target region (-10 cm< zV TX < 4 cm).

For type 9 K0
S we require `/σ` >5 (where ` is the distance between the charm and the

K0
S decay vertices, and σ` is the error on that distance).

For the hadronic modes we require the invariant mass of the K0
S and the pions

from the D to be in the window 1.7–2.1 GeV/c2, and that the total momentum of the

reconstructed particles (which corresponds to the total momentum of the D) be greater

than 35 GeV/c. For the mode D0 → K0π−π+ we require opposite charges for the

candidate pions. For semileptonic modes the invariant mass M(Ksπ
−`) is required to

be smaller than 2.1 GeV/c2. Table 5.1 summarizes the Selection–1 requirements.

5.2 Selection–2

The data were reduced from 300 GB to about 70 GB with the Selection–2

process. This is a selection of the semileptonic decay and the normalization mode:

D0 → K0π−`+ν and D0 → K0π−π+. In addition to the Selection–1 cuts for these two

modes, a preliminary reconstruction of the D∗+ → D0π+ is performed.

An event is retained if there is a pion candidate that gives a mass difference be-
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K0
S TYPE 1, 4, 5, 9

(M(π−π+) − 0.4977)/σM(π−π+) < 3

Common Cuts for π, `: Linked Tracks
Non–zero Angle w.r.t. Beam Axis

All π’s picon>-6

Inner Electron p >10GeV/c, 5 MWPC Stations 10 <IEID< 13
Outer Electron p >5GeV/c, 3 MWPC Stations 0.8 <E/p< 1.25, OESCDST≥0.5
Inner Muon INNER MUON CL>0.1%
Outer Muon OUTER MUON CL>0.1%

DCL>1%
D decay Vertex -10 cm< zV TX < 4 cm

K0
S Used for Vertexing Only if Type 9

1.7 GeV/c2< M(Ksπ
−π+) < 2.1 GeV/c2

Invariant Masses 1.7 GeV/c2< M(Ksπ
−π+π+) < 2.1 GeV/c2

M(Ksπ
−µ+) < 2.1 GeV/c2

D Momentum p(Ksπ
−π+), p(Ksπ

−π+π+) > 35 GeV/c

Ksπ
−π+ mode Opposite Charge π− and π+

Table 5.1: Summary of the requirements for Selection–1.
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tween the D∗ and the D in the broad region where the signal events are expected to pile

up. We call this pion candidate “πsoft ”, due to its rather low average momentum (about

8 GeV/c). For the hadronic mode we require ∆M= M(Ksπ
−π+πsoft)−M(Ksπ

−π+) <

200 MeV/c2 and for the semileptonic mode we require ∆M= M(Ksπ
−µ+πsoft) −

M(Ksπ
−µ+) < 300 MeV/c2. At this stage the neutrino momentum is undetermined,

so the distribution is broader for the semileptonic mode than for the hadronic mode. In

the rest of the thesis we will refer to the mass difference as ∆M for both the hadronic

and semileptonic modes. The πsoft candidate must pass the same cuts as the π− from

the D0 : the track must be linked, it must have picon > -6, and the hypothesis that the

angle with respect to the beam axis is not zero must have C.L.>3%. No requirement is

made on the sign of the charge. We require that the lepton and the pions (π− from the

D0 and πsoft ) not share the track segment in either the SSD or in the MWPC systems.

5.3 Selection Cuts for D0 → K0π−µ+ν and D0 → K0π−π+

After the Selection–1 and Selection–2 processes are finished, tighter requirements

are applied to further select signal events and reject backgrounds.

In addition to the reconstructed mass being within three standard deviations

from the nominal mass, we identify the K0
S with tighter requirements that depend on

the Vee type. For type 1 K0
S we require the uncertainty on the z coordinate of the

decay vertex to be smaller than 10 cm. Both pions must be reconstructed in the first

3 MWPC stations, they each must have momentum greater than 3 GeV/c, and their

slopes along the x direction must be greater than 0.002 (to reject events where one of

the pions is from an e+e− pair). The K0
S momentum must be greater than 7 GeV/c.

For type 4 K0
S we require that the distance of closest approach between the pions is

less than 0.6 cm. The linked track from type 5 K0
S must have the slope along the x

direction greater than 0.002. For type 9 K0
S we require that the decay vertex is outside

the material in the target region and it must have a fit confidence level greater than
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5%. Fig. 5.1 shows the di–pion mass distributions for the K0
S candidates for the final

sample used for this thesis. The K0
S types 4 and 5 constitute the bulk of the data.

The selection of the π− candidate for the semileptonic mode starts from the

linked tracks that do not have double links in the MWPC system, as is normally the

case for e+e− pairs where the two tracks get separated in the first magnet. To reject this

background, we also require that the probability for the track to be produced at zero

degrees with respect to the beam is less than 3%. Čerenkov identification is performed

by requiring picon > −6, and W(K)-W(π)>1. The track momentum must be greater

than 10 GeV/c. For the hadronic mode we identify the pion that has opposite charge

with respect to πsoft and apply the same requirements as for the π− in the semileptonic

mode.

The muon candidate is selected from the linked tracks that have a C.L. greater

than 1% for the fit to the hits in either the inner or the outer muon system. The track

must not be double linked, and it must be produced at non–zero angle. The track

must have been reconstructed in all 5 MWPC stations for inner type muons and in

the first 3 MWPC stations for outer type muons. Its momentum must be greater than

10 GeV/c. This cut significantly reduces the contribution from the outer type muons.

We intentionally do not adopt looser cuts for this category, as studies showed that they

are more contaminated by backgrounds. For inner type muons we require that the

hypothesis that the muon trajectory is consistent through the two analysis magnets has

a confidence level greater than 1%. This requirement is designed to reject background

from the decay π+ → µ+ν. The hits must have been found in at least 5 out of 6 planes

in the inner muon arrays. In the momentum range 13.2 GeV/c < P (µ) < 17.4 GeV/c,

where the muon Čerenkov pattern is more similar to the electron than to the pion,

we require that the muon track satisfies W (π) −W (e) > 0. For outer type muons we

require that at least 200 cm of material has been passed through (which rejects most

of the particles that are more likely to be absorbed) and the track must have been
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Figure 5.1: M(π−π+) distributions for K0
S candidates for the Vee types used in this

thesis. Type 1, 4, 5, and 9 correspond to M1 stub–stub, M1 stub–track, M1 track–
track, and SSD type, respectively.
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reconstructed in the first 3 MWPC stations.

The muon and pion candidates (the two pion candidates) for the semileptonic

(hadronic) mode are used to form the charm decay vertex. The K0
S is included in

the vertex finding only if it is type 9, as its direction is known with low precision for

the other categories. The vertex is required to have good confidence level (C.L.>5%)

and, in order to reject hadronic reinteraction events, it must lie one sigma outside

of the target material. Background events from higher multiplicity charm decays are

discarded by requiring that the maximum confidence level for other tracks to come from

the secondary vertex (ISO2) is less than 0.1% (not including tracks associated with the

primary vertex).

The charm production vertex (or primary vertex) of the event is reconstructed

with DVFREE (see Sect. 4.2). Candidates are discarded if the confidence level is less

than 1%. If more than one vertex is found, the vertex with highest track multiplicity is

selected and, in the case of a tie, the one with the largest detachment from the secondary

vertex is kept. Vertex detachment is perhaps the most powerful tool to discard non–

charm hadronic interaction events. The detachment is given by the distance between

the two vertices over its error (`/σ`), as schematically shown in Fig. 5.2. In a fixed target

experiment, particles are produced with a large longitudinal momentum; for this reason

the Lorentz boost between the particle rest frame and the laboratory system is quite

large. Charm particles travel distances long enough to provide a fairly good separation

between primary and secondary vertices. On the contrary, non–charm backgrounds

decay promptly or much further downstream. For this reason the charm decay can be

identified by requiring that the primary and the secondary vertices are reconstructed

with a significantly large detachment. For both the semileptonic and the hadronic modes

we require `/σ` > 5.

Once the D0 decay is reconstructed, we search for a pion (πsoft ) and reconstruct

the decay D∗ → D0π+. The pion must be one of the linked tracks coming from the
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Primary Vertex

Secondary Vertex

L
Beam

Figure 5.2: A schematic for a charm particle production and decay is shown.

primary vertex. It must not be double linked and it must be produced at a non–zero

angle with respect to the beam direction. The track is identified as a pion by requiring

picon>-6 and its momentum must be greater than 2 GeV/c. For the semileptonic mode

the sign of charge of πsoft is required to be the same as that of the muon.

For the semileptonic mode we require that the K0π− invariant mass is in the

window of one natural width (Γ = 50 MeV/c2) around the nominal K∗(892)− mass, see

Fig. 5.3. The K∗(892)− natural width is much larger than the experimental resolution

on the reconstructed K0
Sπ

− mass (about 5 MeV/c2). For this mode the total “visible”

mass M(K0
Sπ

−µ+) is required to be less than 1.8 GeV/c. Due to the missing neutrino

energy, M(K0
Sπ

−µ+) has to be less than the nominal D0 mass. With this cut we reject

a significant part of the combinatoric background and most of the contamination from

D0 → K0π−π+, where a pion is misidentified as a muon. These background events

can pass the mass cut if one of the pions decays. We have evaluated with Monte Carlo

studies that this contamination is negligible. Fig. 5.4 shows the D0 reconstructed mass

distribution for the hadronic mode and the “visible” D0 reconstructed mass for the

semileptonic mode (M(Ksπ
−µ+)) for our final sample.

Although the neutrino is undetected, different methods can be used to find its

momentum, which we must use to compute q2 and ∆M . To compute the q2 we
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Figure 5.3: K0π− invariant mass. We select events within 50 MeV of the nominal
K∗(892)− mass (shaded area).
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use a “D∗ cone” algorithm. By imposing energy and momentum conservation in the

K∗(892)− rest frame and by constraining the D and the D∗ to their nominal masses,

we fix the magnitude of p(D0) (which in this frame is equal to p(ν)), but its direc-

tion lies on a cone. The direction is chosen by selecting the solution that gives the

best χ2 when compared with the D0 direction as given by the line connecting the two

vertices. Additional details on the method can be found in Appendix A. To compute

the mass difference, we determine the neutrino momentum using the “neutrino closure”

algorithm. This method is based on energy and momentum conservation for the decay

D0 → K0π−µ+ν and uses the nominal mass of the D0 meson. The algorithm allows for

us to determine the neutrino momentum up to a two fold ambiguity, which we resolve

by choosing the solution with lowest ∆M . Monte Carlo studies show that this choice is

most often the correct solution. The method is fully described in Appendix B.

Fig. 5.5 and Fig. 5.6 show the mass difference distributions for the semileptonic

and the hadronic modes, for different values of the detachment cut (`/σ` > 4,....,12).
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Figure 5.5: Distributions of the mass difference for the semileptonic mode, ∆M=
M(Ksπ

−µ+ν πsoft) − M(Ksπ
−µ+ν) for different values of the `/σ` cut. From left

to right, top to bottom: `/σ` > 4, 5, ...,12.
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Figure 5.6: Distributions of the mass difference for the hadronic mode, ∆M=
M(Ksπ

−π+πsoft) − M(Ksπ
−π+), for different values of the `/σ` cut. From left to

right, top to bottom: `/σ` > 4, 5, ...,12.



Chapter 6

Fit to the Form Factor Ratios and to the S-wave Amplitude

In this chapter we motivate the use of a model including the K0π− S-wave com-

ponent, describe the fitting procedure for the form factor ratios and for the amplitude

of the S-wave, present the fit results, and describe the estimate of the systematic un-

certainty.

6.1 The K0π− S-wave

The study of the decay D0 → K0π−µ+ν presented in this thesis is based on a

model that includes an S-wave component that interferes with the dominant K∗(892)−.

As described in Section 1.4, the S-wave is represented by an amplitude and a constant

phase, Aeδ. The new terms introduced in the decay amplitude due to the S-wave contri-

butions are a term proportional to A2 and an interference term between the S-wave and

the K∗(892)−. Since the A2 term is small, the presence of the S-wave contribution can

be inferred from the interference term. This term is (from the square of the first term

in equation 1.15):

Interference = 8 cos θV sin2 θ`A Re(e−iδBK∗−)H2
0

− 4(1 + cos θ`) sin θ` sin θVA Re(ei(χ−δ)BK∗−)H+H0

+ 4(1 − cos θ`) sin θ` sin θVA Re(e−i(χ+δ)BK∗−)H−H0

The interference term introduces a component proportional to cos θV in the decay
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Figure 6.2: MC reconstruction efficiency versus cos θV .
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amplitude, which is otherwise symmetric with respect to cos θV .

If the efficiency versus cos θV is flat, the distribution of M(Ksπ
−) weighted by

cos θV is null if there is no S-wave, while it has an excess in the negative values if there

is the S-wave. Figure 6.1 shows a comparison of data with two Monte Carlo distribu-

tions, one generated with S-wave and one without. In order to reduce the amount

of background for this comparison, we subtract the same distribution for the “wrong

sign” events. These events are given by combinations where the muon and πsoft have

the opposite sign, and is a good rapresentation of the combinatoric background. We

observe a large discrepancy from zero with and without the S-wave in the MC. This is

due to the fact that the efficiency is not flat versus cos θV , but has a linear dependence,

with main loss of events at positive cos θV values (see Fig 6.2). Data agrees well with

both simulations, but the MC with S-wave included is a better description, so we use

the MC that includes the S-wave as a default simulation, and we use the MC without

S-wave as a check on the bias due to this assumption (as will be described later).

6.2 The Fitting Technique

Using a binned maximum likelihood technique, we fit simultaneously the three

dimensional distribution cos θV ×cos θ`×q2 and the ∆M distribution. The fit to ∆M al-

lows us to assess the background level, since for this variable the signal and the back-

ground distributions have very different shapes. For the ∆M component we use 60 bins

in the region 0.14–0.20 GeV/c2. For the cos θV ×cos θ`×q2 distribution we select events

with ∆M< 0.15 GeV/c2, and we divide the phase space into four equally spaced bins

for each of the two angular variables and two equally spaced bins for q2. We construct

the likelihood L as:

L =
∏

ijk

n
sijk

ijk e
−nijk

sijk!
×

∏

l

NSl

l e−Nl

Sl!
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where sijk (nijk) is the number of observed (expected) events in the ijkth bin of the three

dimensional distribution, and Sl (Nl) is the number of observed (expected) events in

the ∆M distribution. The number of expected events is given by signal and background

contributions.

Non-charm backgrounds are effectively removed by the `/σ` requirement, by dis-

carding events where the reconstructed decay vertex of the D0 lies within one standard

deviation from the target, and by the muon requirement. Contamination from charm

decays is estimated with a Monte Carlo (that will be called MCBKG) which simulates

all known charm decays other than our signal mode. The background shape for both

distributions (∆M and cos θV × cos θ` × q2) is taken from the distribution of the re-

constructed events in MCBKG, and their amplitude is free to float. Since we require

∆M<0.15 GeV/c2 for the events used to plot cos θV × cos θ` × q2, we require that the

signal (background) yield in the cos θV × cos θ` × q2 distribution is equal to the area of

the signal (background) shape in the ∆M distribution below 0.15 GeV/c2.

For the ∆M distribution, the shape obtained from Monte Carlo generated D0 →

K0π−µ+ν events is used as the expected signal shape (after all selection cuts are ap-

plied). For the cos θV × cos θ` × q2 distribution, the signal contribution to nijk is com-

puted as the number of events generated in the bin ijk corrected by the efficiency in

that bin. The generated number of events depends on the form factor ratios and on the

S-wave parameters. We compute this number using a weighting of the MC generated

events based on [38]. For each Monte Carlo event generated in the bin ijk, we fill that

bin with a weight given by the ratio of the decay amplitude in Eq. 1.15 over the decay

amplitude evaluated for the input Monte Carlo values 1 . For instance, for the form

factor ratios fit, where the S-wave parameters are fixed, the weight is given by:

Weight =
Γ(r′v, r

′
2)

Γ(r◦v , r
◦
2)

(6.1)

1 The FOCUS Monte Carlo generation uses the D+ form factor ratios and the S-wave parameters
measured in [20] for any D → V `ν` decay: rv = 1.504, r2 = 0.875, A = 0.330, and δ = 0.68.
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where r′v and r′2 are the fit parameters and r◦v and r◦2 are the values used for generating

the MC events. This way the number of generated events in the bin ijk is:

No(Generated)ijk =
∑

eijk

Γe(r′v, r
′
2)

Γe(r◦v , r
◦
2)

where the sum is over the generated events in the bin ijk of the cos θV × cos θ` ×

q2 distribution. Finally, the number of expected signal events in such bin is:

Sigijk = εijk ×
∑

eijk

Γe(r′v , r
′
2)

Γe(r◦v , r
◦
2)

where εijk is the efficiency of the bin. This efficiency is determined by dividing the

Monte Carlo reconstructed events in each of the cos θV × cos θ` × q2 distribution bins by

the number of generated events in that bin. Fig 6.3 and 6.4 show the efficiency in each

bin of the three variables.

The choice of the binning for the cos θV × cos θ` × q2 distribution (4 × 4 × 2)

gives information on the angular distributions of the W and the K0π− decays, for two

regions of q2. At low q2 the angular dependence is more dramatic, while a more isotropic

behavior is expected for high q2 values, where the helicity amplitudes contribute with

similar strength. Fig. 6.5 shows the MC distributions of the two angular variables for

high and low q2 . The events are plotted before any acceptance or reconstruction effect,

to show differences only due to the dynamics of the process. Fig. 6.6 shows the same

distributions for data reconstructed events compared to MC reconstructed events. The

agreement is good for all four plots.

The results of the simultaneous fit to ∆M and cos θV × cos θ` × q2 are illustrated

in Fig. 6.7. The χ2 per degree of freedom in Fig. 6.7b is 40.0/30, which corresponds to

a confidence level of 22%. We measure:

rv = 1.71 ± 0.68 (6.2)

r2 = 0.91 ± 0.37 (6.3)
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Figure 6.3: Efficiency versus the four cos θV and the four cos θ` bins.
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Figure 6.8: Amplitude fit results for M(Kπ) < 0.892 GeV/c (first point) and
M(Kπ) >0.892GeV/c2 (second point). The results are compared to the value fit on the
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where the errors are statistical.

After fitting for the form factor ratios, we fix the values to the fit results in Eq. 6.2

and 6.3 and fit for the S-wave amplitude. For this fit we still fix the phase of the S-

wave to the FOCUS measurement for the D+ (δ = 0.68 rad) as we have seen a lack of

sensitivity to this parameter in fits where its value is let free to float. We measure the

S-wave amplitude A to be:

A = 0.35 ± 0.22

where the error is statistical.

In the D+ form factors and S-wave analysis, it has been determined that in the

low M(Kπ) data (M(Kπ) < 0.892 GeV/c2) the effect of the S-wave was more evident.

We have split the data accordingly into low and high M(Kπ), but, probably due to the

low statistics and the large variation in the efficiency versus cos θV and cos θ`, we do

not see such striking difference; see Fig. 6.8.
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6.3 Toy Monte Carlo Study

To check the accuracy of the method and the correct estimate of the errors, a

“toy Monte Carlo” test was performed. The fit method is tested on 1000 samples each

statistically equivalent to the data. The samples are obtained by Poisson-fluctuating

1000 times the four dimensional distribution of ∆M × cos θV × cos θ` × q2. The two

projections on ∆M and cos θV × cos θ` × q2 for each sample were fit simultaneously

with our method. If the fit technique works correctly, the distribution of the 1000 fits

for a given parameter should distribute as a Gaussian with average and width close to

the value and error that the fit reported on the actual data sample for such parameter.

Fig. 6.9 shows the distribution of the 1000 fits results for for rv , r2, and A. The spread

due to statistical fluctuations is determined by a Gaussian fit for each distribution. In

all cases we find that the error reported by our measurement is not underestimated,

for r2 andA it might actually be overestimated. The mean of the Gaussian distribution

is very close to the central value reported by the fit for each parameter. We therefore

conclude that the fitting method is not affected by a systematic bias.

6.4 Systematic Uncertainty Evaluation

We carefully considered and evaluated many possible sources of systematic uncer-

tainty in our results. A possible poor MC simulation of the detector performance and

of the event reconstruction and selection efficiency might introduce a bias in estimat-

ing the number of expected events in the likelihood construction. Also, the particular

fitting choices (e.g. the binning of the histogram) might introduce a systematic error.

Due to the level of the statistical uncertainty of this analysis, and considering the level

of bias from simulation studies in previous FOCUS analyses, we find that the largest

contribution to the systematic uncertainty is due to the fitting choices rather than to

the Monte Carlo simulation.
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6.4.1 Investigation of Bias from Simulation

To evaluate how well the Monte Carlo simulates the data we make several com-

parisons of variable distributions. Fig. 6.10 shows the distribution of the momentum of

π−, µ+, πsoft , and K0
S for data and Monte Carlo. In order to minimize the background

contamination we select events with ∆M<0.15 GeV/c2, therefore the events we plot

are the same events that are fit in the cos θV × cos θ` × q2 distribution. It is crucial that

the momenta are well simulated, since for all the detectors the performance (e.g. the

efficiency or the misidentification rate) varies as a function of the momentum. From

this comparison we find very good agreement, within errors, between simulation and

real data.

The correctness of the efficiency evaluation from Monte Carlo can be inferred from

studying the stability of the results versus different purities of the signal. We test the rv,

r2, and A stability for a variation of the relevant variables used in the event selection:

p(π), p(µ), p(πsoft ), p(Ks), M(Ksπ), M(Ksπµ), W(K)-W(π), C.L. secondary vertex,

C.L.(µ), µ track consistency in the two magnets, secondary vertex out of target, and

ISO2.

The results, shown in Fig. 6.11, are stable within uncertainties. The more sig-

nificant variations are observed for rv and r2 in the scan on p(µ). Since we use a

relatively significant cut on p(µ) we have investigated it further, along with the other

momenta p(π) and p(πsoft ). For this more detailed investigation we use the “split sam-

ple” technique described in Appendix C and derived from the S–factor method used by

the Particle Data Group [39]. Briefly, the data are split into statistically independent

samples, for example it is split in distinct momentum regions. The measurement is

performed on each sample for the observable x (e.g. rv) and a χ2 for the hypothesis

that the independent measurements are consistent is calculated. A poor consistency

might result from badly estimated efficiency with respect to the momentum. We define
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Figure 6.11: Results on rv, r2 and S-wave amplitude for different cut variations. From
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poor consistency to be the case where χ2 > 1. In this case the errors on the different

measurements are scaled in order to return χ2 = 1, and we calculate a systematic un-

certainty for the x measurement by subtracting in quadrature the statistical error from

the scaled error on the weighted average of the independent measurements.

Fig 6.12 shows the results for rv, r2, and A for the three sets of two inde-

pendent samples: p(π) < 23 GeV/c and p(π) > 23 GeV/c, p(µ) < 21 GeV/c and

p(µ) > 21 GeV/c, p(πsoft )< 8 GeV/c and p(πsoft )> 8 GeV/c. The momentum values

for the splits are given by the MC average of each momentum distribution (after wrong

sign subtraction). We find no systematic uncertainty associated to the simulation of the

momenta.

6.4.2 Investigation of Bias from Fitting Technique

The fitting method consists of a particular set of choices of parameters and tech-

nique. Such choices have been varied in order to evaluate how they might bias the

result.

The binning in both the ∆M and cos θV × cos θ` × q2 distributions has been

varied. The cos θV × cos θ` × q2 bins have been varied using more or less bins (3×3×2,

4×4×2, 4×4×1, 5×5×2). The ∆M fit was varied by using finer (0.5 MeV/c per bin)

and larger (2 MeV/c per bin) bins than the standard 1 MeV/c per bin. For the rv and

r2 fit, we include a variation where the S-wave amplitude and phase are set to zero.

For the amplitude fit we vary the S-wave phase, taking the values at plus and minus

one standard deviation.

A different fitting technique (which will be called “FT2”) has been investigated in

the course of the analysis. The final choice was selected by the one that was predicted

to have a higher precision. The other fitting method is used as fit variation. FT2 is

also a simultaneous fit of ∆M and cos θV × cos θ` × q2, but the number of expected

signal events per bin is calculated in a different way. For each MC event we compute
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Figure 6.12: rv, r2, and S-wave amplitude results for the three sets of two inde-
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is p(π) < 23 GeV/c and p(π) > 23 GeV/c, second set is p(µ) < 21 GeV/c and
p(µ) > 21 GeV/c, and third set is p(πsoft )< 8 GeV/c and p(πsoft )> 8 GeV/c.
The standard results are represented by the horizontal bands.



120

0

0.5

1

1.5

2

2.5

3

3.5

Fit Variations

R
V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fit Variations
R

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fit Variations

S-
W

av
e 

A
m

pl
it

ud
e
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the amplitude that it was generated with, using the God’s block information on the

kinematic variables. Then the bin where such event was reconstructed is filled with such

probability. The same weighting method as seen for the standard fit is used to compute

the amplitude, since the MC was generated with fixed RV and R2 values. By filling the

reconstructed bin, this method also accounts for resolution. This fitting technique has

proved not sensitive enough to measure the S-wave amplitude, so it is not included in

the fit variation for this parameter.

The results from fit parameters and fit technique variations are shown in Fig. 6.13.

These measurements have been performed on samples that are 100% correlated and are

all a priori likely, so the uncertainty on the measurement due to fitting choice has been

evaluated as the variance of the set of measurements. We find:

σ(fit)rv = 0.34

σ(fit)r2
= 0.10

σ(fit)A = 0.05 GeV−1

6.4.3 Total Systematic Uncertainty

The total systematic uncertainty is given by the sum in quadrature of the uncer-

tainties from simulation and fit choice:

σ(sys)rv =
√

σ(sim)2 + σ(fit)2 = 0.34

σ(sys)r2
=

√

σ(sim)2 + σ(fit)2 = 0.10

σ(sys)A =
√

σ(sim)2 + σ(fit)2 = 0.05 GeV−1

The systematic uncertainties are summarized in Table 6.1. Including both statistical and

systematic errors, we measure theD0 form factor ratios and theK0π− S-wave amplitude
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for the decay D0 → K0π−µ+ν to be:

rv = 1.71 ± 0.68 (sta) ± 0.34 (sys) (6.4)

r2 = 0.91 ± 0.37 (sta) ± 0.10 (sys) (6.5)

A = 0.35 ± 0.22 (sta) ± 0.05 (sys) GeV−1 (6.6)

Source σ(rv) σ(r2) σ(A) (GeV−1)

Simulation 0. 0. 0.
Fit 0.34 0.10 0.05

Total 0.34 0.10 0.05

Table 6.1: Summary of the systematic uncertainties on rv, r2 , and A.



Chapter 7

Measurement of the Branching Ratio

Γ(D0 → K∗(892)−µ+ν)/Γ(D0 → K0π−π+)

In this chapter we will describe the measurement of the branching ratio Γ(D0 →

K∗(892)−µ+ν)/Γ(D0 → K0π−π+) and the evaluation of the systematic uncertainty.

7.1 The D0 → K0π−π+ and D0 → K∗(892)−µ+ν Fits

The reconstruction of the semileptonic and of the hadronic modes from the final

states K0
Sπ

−µ+ν and K0
Sπ

−π+ is described in Chapter 5. As previously stated, the

reconstruction and the selection cuts for the hadronic decay are chosen to be as similar

as possible to the ones used for the semileptonic decay. This allows us to substantially

reduce possible systematic bias in the branching ratio due to a possible poor Monte

Carlo simulation of acceptance and efficiency.

The branching ratio is measured by dividing the efficiency corrected signal yield

of the D0 → K∗(892)−µ+ν mode by the efficiency corrected signal yield of the D0 →

K0π−π+ mode. For each mode the signal yield is given by the number of signal events

reported by the fit to the ∆M distribution. The efficiency is evaluated by dividing the

Monte Carlo signal yield of the reconstructed events by the number of generated events.

The efficiency corrected yield (E.C.Y.) for each mode is therefore given by:

E.C.Y. =
Yield(data)

Efficiency
= Yield(data) × #Generated(MC)

Yield(MC)
(7.1)
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For the semileptonic mode we have seen that the simultaneous fit to ∆M and

cos θV × cos θ` × q2 slightly underestimates the errors on the yield, so for measuring

the branching ratio we fit the ∆M distribution alone. The fit is performed using the

same components as for the form factor ratios measurement. The shape for the signal

events is obtained from the distribution of the reconstructed events in a Monte Carlo

that simulates the D∗+ production and decay D∗+ → D0π+ with subsequent decay

D0 → K0π−µ+ν. The background shape is taken from the MCBKG, which as seen

before simulates all known charm decays except the one under study. The fit to ∆M for

the semileptonic mode is shown in Fig. 7.1. The fit reports 175±17 signal events.

For the hadronic mode we select events based on the reconstructed M(K0
Sπ

−π+).

Fig. 7.2 shows the distribution of M(K0
Sπ

−π+) for data and Monte Carlo events. The

two distributions are fit to a Gaussian distribution for the signal plus a first order

polynomial for the background. The mass peak and width measured in data are M =

1.868 GeV/c2, σ = 0.012 GeV/c2, while in Monte Carlo they are M = 1.866 GeV/c2,

σ = 0.012 GeV/c2. For both data and Monte Carlo we select events within two stan-

dard deviations of the fit M(K0
Sπ

−π+) mass and we fit the mass difference distribution

∆M =M(K0
Sπ

−π+πsoft )-M(K0
Sπ

−π+). The ∆M distribution is fit to two Gaussian

shapes for the signal events and the following threshold function for the background:

BKG(x) = a (x−mπ)1/2 + b (x−mπ)3/2 + c (x−mπ)5/2 (7.2)

The use of two Gaussian distributions provides a better fit confidence level. This

is due to the fact that because of the different topologies of the decay, an average

resolution is not a good representation for all events. When we used a single Gaussian

we found rather poor fit confidence levels. The ∆M fits for data and Monte Carlo using

two Gaussians are shown in Fig. 7.3. We measure 1918±52 events.
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7.2 The Branching Ratio Measurement

For the D0 → K∗(892)−µ+ν mode, we measure the efficiency corrected yield by

reconstructing inclusively the decay D0 → K0π−µ+ν. This corrected yield must be

corrected in order to account for the right amount of vector decays. We assume that

Monte Carlo input S-wave parameters are very close to the parameters in data since

they are determined in the much larger statistics analysis of theD+ → K−π+µ+ν decay,

and they are in excellent agreement with what we have measured for the D0 1 . For this

reason the factor that corrects the amount of K∗(892)− in the yields of data and Monte

Carlo should be the same and cancel out in Eq. 7.1. The number of generated events

must be corrected by the relative branching ratio B(D0 → K∗(892)−µ+ν)/B(D0 →

K0π−µ+ν) in the Monte Carlo. In order to calculate this ratio we divide the integral

over phase space of the decay amplitude when only K∗ is generated, by the integral of the

decay amplitude when the K0π− system is generated inclusively (with K∗(892)− and

S-wave). The ratio of integrals is calculated numerically using a MC simulation. We

find that in our MC simulation the ratio of K∗(892)− events over the total K0π− events

is 0.951.

Accounting for the component ofK∗(892)− events in theD0 → K0π−µ+ν sample,

we find that the relative efficiency between the semileptonic and the hadronic decay is

0.27 and we measure the branching ratio to be:

Γ(D0 → K∗(892)−µ+ν)

Γ(D0 → K0π−π+)
= 0.337 ± 0.034 (7.3)

where the error is statistical.

7.3 The Systematic Uncertainty Evaluation

Different possible sources of systematic bias are investigated. The correctness

of the Monte Carlo efficiency calculation is evaluated by studying the branching ratio

1 The S-wave parameters measured by FOCUS for the D+
→ K−π+µ+ν decay are: A = 0.330 ±

0.022 (stat) ± 0.015 (sys) GeV−1 and δ = 0.68 ± 0.07 (stat) ± 0.05 (sys) rad.
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result versus cuts variations. The bias from the fitting choices is evaluated by varying

the binning and the fit range. Finally, we study the dependence of the result on different

Monte Carlo input parameters.

7.3.1 Investigation of Bias in the Efficiency Evaluation

Like for the semileptonic mode (see Fig. 6.10), we compare the momenta distri-

butions of Monte Carlo and data for the hadronic mode. As stated before, momentum

simulation is crucial, as detector efficiency and misidentification levels vary with the

momentum. For the comparison we require ∆M < 0.15GeV/c2 , in order to reduce the

amount of background. Fig. 7.4 shows the Monte Carlo distributions superimposed to

data. The number of Monte Carlo events is scaled to data. The agreement is good

within errors. We notice a slightly higher average K0
S momentum for the simulation

than for data. Nevertheless, the branching ratio result is stable within errors when we

vary the requirement on the K0
S momentum.

The stability of the branching ratio result has been tested versus the individual

cut variations, to search for possible bias in the reconstruction efficiency calculation.

Most of the cuts are identical for the two modes, so they are varied simultaneously.

We vary `/σ`, p(π
−), p(µ+) (or p(π+) for the hadronic mode), p(πsoft ), p(K0

S), W(K)-

W(π), C.L. of the secondary vertex, µ (or π+ for the hadronic mode) track consistency

in the two magnets, number of standard deviations of the secondary vertex being out

of target, and ISO2. For the semileptonic mode we also vary the M(K0
Sπ) window, the

M(K0
Sπµ) upper limit, and C.L.(µ). Fig. 7.5 shows the results of the study on the cut

variations: the efficiency corrected yield for semileptonic and hadronic modes, and the

branching ratio. All the results are stable within uncertainties. The momenta variations

for the hadronic mode show variations from the result with baseline cuts that exceed

one standard deviation, but the trend cancels out in the branching ratio measurement.

As for the form factor ratios, we further investigate the momenta p(π−), p(µ+)
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Figure 7.4: Comparison of momentum distributions between data (points with error
bars) and Monte (histogram). a) and b): momentum of the pion with opposite and
same sign as πsoft , respectively; c): p(πsoft ); d): p(K0
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(p(π+) for the hadronic mode) and p(πsoft ) using the split sample technique described

in Appendix C. Fig. 7.6 shows the branching ratio results for the three sets of two

independent samples. The split sample technique reports no systematic bias from the

simulation of the momenta.

7.3.2 Investigation of Bias from Fitting Choices

The bias on the branching ratio result due to fitting choices has been evaluated

by varying the bin size (0.5 MeV/c2 per bin and 1 MeV/c2 per bin), and by varying the

fit range. For Kππ the fit ranges 0.141 – 0.150 GeV/c2 and 0.141 – 0.190 GeV/c2 have

been used in addition to the standard 0.141 – 0.165 GeV/c2 range, and ∆M for Kπµν

has been fit in the ranges 0.140 – 0.184 GeV/c2 and 0.141 – 0.170 GeV/c2 in addition

to the standard 0.140 – 0.200 GeV/c2 fit region. Fig. 7.7 shows the results for each

variation. As all the measurements are a priori likely, the uncertainty is given by the

variance of the measurement. We find:

σ(fit)BR = 0.002
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Figure 7.8: The branching ratio results for different input parameters in the Monte
Carlo are compared to the result with default model used in the simulation.

7.4 Uncertainty from Monte Carlo Input Model

In order to run the Monte Carlo simulation, one has to choose different parame-

ters. We call the standard choice the “input model”. We have varied this input model

in three different ways to estimate the systematic bias introduced by our choices.

The first variation concerns the description of the normalizing mode. The de-

cay D0 → K0π−π+ occurs through different possible resonant structures which are

determined experimentally. The different structures may have different reconstruction

efficiency and we want to study how the efficiency changes within a range of reasonable

alternatives for the different components. We recomputed the efficiency using a resonant

structure that is more similar to the recent BaBar result [40]. The main difference con-

sists of lowering the K∗(892)− component (from 63.8% to 60%), raising the K∗(1430)0

component (from 6.7% to 9%) and the non–resonant component (from practically 0 to

1%). With the new resonant structure we find a small increase (from 0.27 to 0.29) in

the relative efficiency of the semileptonic decay over the hadronic decay.

In order to determine the dependence of the branching ratio result on the value

of the form factor ratios and of the S-wave parameters used in Monte Carlo, we run a
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new simulation using a different set of values. The values for the variation (rv= 1.733,

r2 =0.890, A=0.33, and δ=1.09) were chosen from an analysis when a slightly different

set of cuts were used. A fit in which the S-wave phase was allowed to freely float was run,

in order to determine the value used in the variation. We find no significant difference

in the efficiency between the default input model and the varied input model.

The branching ratio measurement is performed using a hadronic and a semilep-

tonic mode. The normalization channel is chosen in such a way that some possible

systematic biases equally affect the two modes and cancel out in the ratio (for instance

for the K0
S). Nevertheless there is a substantial difference between the two modes in

the amount of hadronic energy in the final state. Due to this difference, a possible bias

in the Monte Carlo modeling of the trigger (which uses information from the hadronic

calorimeter) may not cancel out in the ratio. We evaluate the size of this effect by using

a different, more “crude” simulation of the hadronic calorimeter. The relative efficiency

of the two modes changes from 0.27 to 0.29.

The branching ratio result with default Monte Carlo input model is compared

to the three model variations in Fig. 7.8. All the results using a varied model are in

excellent agreement with our measurement. We calculate the systematic uncertainty

from the three sources combined to be:

σ(model)BR = 0.013

and we conclude that the bias introduced from the uncertainties on theD0 → K0π−π+ res-

onant structure, from the input values for the semileptonic decay amplitude, and from

the simulation of the hadron calorimeter used for the trigger do not affect significantly

our measurement.
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7.4.1 Total Systematic Uncertainty

Three sources of systematic uncertainty have been evaluated, the Monte Carlo

determination of acceptance and reconstruction efficiency, the choice of fit parameters,

and the choice of input model for the Monte Carlo. These are independent sources and

their contributions are summed in quadrature to find the total systematic uncertainty.

We find:

σ(sys)BR =
√

σ(sim)2 + σ(fit)2 + σ(mod)2 = 0.013

The systematic uncertainty results are summarized in Table 7.1. Including sta-

tistical and systematic errors, we measure the branching ratio to be:

Γ(D0 → K∗(892)−µ+ν)

Γ(D0 → K0π−π+)
= 0.337 ± 0.034 (stat) ± 0.013 (sys)

Source σ(BR)

Simulation 0.000
Fit 0.002
Model 0.013

Total 0.013

Table 7.1: The systematic uncertainties from the Monte Carlo efficiency and acceptance
evaluation, the fitting condition, and from the input parameters and trigger simulation
in the Monte Carlo are shown.



Chapter 8

Conclusions

In this chapter we discuss the importance of investigating semileptonic decays

in the heavy quark sector and we summarize the results of the analysis of the decay

D0 → K0π−µ+ν.

8.1 Semileptonic Decays in the Heavy Quark Sector

Semileptonic decays are accessible to experiment since they have relatively large

branching fractions (∼ 5%) and can easily be separated from backgrounds. In the last

two decades the semileptonic decay of heavy mesons (B → D(∗)`ν, D → K(∗)`ν ), have

been extensively investigated both from experiments and from theory. These decays

are an excellent environment for determining the Cabibbo-Kobayashi-Maskawa matrix

elements in the heavy quark sector, since they depend on a single matrix element which

can be factorized out of the decay amplitude:

Γ = |VQq′ | · Γ0 (8.1)

Semileptonic decays are also crucial for investigating QCD. Although the decay

occurs through a weak interaction, the picture is complicated by QCD effects due to the

fact that the quarks are confined into an hadron (both in the initial and final states).

These decays are characterized by a low momentum transfer (q2 ) between the parent

and the daughter meson compared to the mass of the intermediate boson W . In this
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energy range, Γ0 can be written as a product of a well determined leptonic current times

an hadronic current. The determination from first principles of the hadronic current

is not completely possible, but it can be built as a V − A weak current parameterized

through the form factors, where all the QCD effects are confined.

Form factors can be calculated by theory (quark models [7, 8, 9, 10, 11, 12, 13],

lattice QCD [14, 15, 16, 17, 18], and sum rules [19]). In the charm sector, where Vcs

is well known, direct comparison between theory and experiment allows for arbitration

between different assumptions and for the adjustment of input parameters. Also the

measurements of semileptonic branching ratios are used as guidelines for theory (for

instance, in quark models they are used to fit for the quark masses and their wave

function parameters, which are then used to calculate the form factors). These compar-

isons between theory and experiment are necessary for constructing a successful model

of hadrons. Once the theoretical tools have been built in the charm sector, they can

be used in other sectors, such as in the semileptonic decay of the bottom hadrons, or

in fully hadronic decays. In the bottom sector the calculation of form factors would

allow, after comparison with the decay rates, a better estimate of |Vub| and |Vcb|. An

improved hadron model is required in the fully hadronic decays. At the moment Heavy

Quark Effective Theory (HQET) is the most reliable model applied to fully hadronic

decays [41]. This model is based on the assumption that the mass mQ of the heavy

quark in the hadron is much larger than the scale of the momentum transfer to the light

quark (ΛQCD ' 0.3 GeV/c2). In HQET the calculations are based on expansions in

1/mQ. The charm quark is light and it is at the limit of the approximation. Although

HQET works well in the bottom sector, there is some evidence that even the bottom

quark might be not heavy enough for the approximation.1

1 One evidence comes from the lifetime of the bottom baryon Λb, which is lower than the expected
value from HQET.
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8.2 Summary of the Analysis of the Decay D0 → K0π−µ+ν

This thesis concerns the semileptonic decay D0 → K0π−µ+ν using FOCUS data.

Previous to the FOCUS experiment, the decay D → Kπ`ν had been treated as a

vector resonant decay D → K∗`ν. In the course of the FOCUS analysis of D+ →

K−π+µ+ν [20, 27], clear evidence for a spin zero component of the K0π− system was

reported. This high statistics study showed that a very good representation for the

data was given by a model where the K∗(892)− interferes with an S-wave component

with constant amplitude and phase over the M(K0π−) region around 0.892 GeV/c2.

The presence of the small S-wave component can be inferred from the interference with

the K∗(892)−. The main feature of this interference is that the decay amplitude is not

symmetric with respect to cos θV , the angle between the π from the K∗(892)−and the

D in the K∗(892)−rest frame

In studying the decay D0 → K0π−µ+ν we have searched for the same evidence.

Unfortunately, the D0 sample has much lower statistics compared to the D+ and the

efficiency dependence on variables that are crucial for the S-wave investigation repro-

duces similar behavior to the one generated by the S-wave. We find the model includ-

ing S-wave is only marginally better at describing our data than the model with pure

K∗(892)−. We decided to use a model that includes the S-wave component. Based

on isospin symmetry, we fix the S-wave phase to 0.68, the value measured for the

D+ → K−π+µ+ν decay. The possible bias due to assuming the presence of an S-

wave contribution is included in the systematic uncertainty.

8.3 Measurements of rv, r2, and A

The form factor ratios and the S-wave amplitude have not been measured for the

decay D0 → K0π−µ+ν. We extract their values from a simultaneous fit to the mass

difference M(D∗)−M(D) = ∆M and the cos θV ×cos θ`×q2 distributions. In this fit the
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amplitude and phase of the S-wave are fixed to the values measured by FOCUS for the

D+ → K−π+µ+ν decay, A = 0.330 and δ = 0.68. The fit is shown in Fig. 8.1. We find

175 ± 17 events. The χ2 per degree of freedom in Fig. 8.1b is 32/27 which corresponds

to a confidence level of 22%. We then fix rv and r2 to the values we measure and we fit

for A.

All results are stable within errors when the selection cuts are varied. The sys-

tematic uncertainty is determined by studying two possible sources of bias, the Monte

Carlo evaluation of the acceptance and efficiency, and the fitting choices. Using the

split sample method described in Appendix C we find no contribution to the uncer-

tainty from Monte Carlo simulation. By varying the binning in the ∆M and the

cos θV × cos θ` × q2 distributions and the fitting method, we evaluate a systematic un-

certainty due to fitting choices.

We measure the form factor ratios and the S-wave amplitude to be:

rv = 1.71 ± 0.68 ± 0.34 (8.2)

r2 = 0.91 ± 0.37 ± 0.10 (8.3)

A = 0.35 ± 0.22 ± 0.05 GeV−1 (8.4)

where first error is statistical and second error is systematic. Using our result for A, we

find that the S-wave component is 6% of the K0π− system.

As stated before all the measurements presented in this thesis are first measure-

ments, but based on isospin symmetry we can compare the results with the measure-

ments using theD+ → K−π+µ+ν decay. The S-wave amplitude has only been measured

by the FOCUS experiment for the D+ decay. The results from the two isospin conjugate

modes, which are shown in Table 8.1, are in excellent agreement.

Several experiments have measured the form factor ratios for the decay D+ →

K−π+µ+ν [20, 21, 22, 23, 24, 25, 26]. None of these measurements include the S-

wave component, except for the FOCUS analysis. Fig. 8.2 shows a comparison of our
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Figure 8.2: Our measurement of rv and r2 for the decay D0 → K0π−µ+ν (first point)
is compared to the measurements for the D+ → K−π+µ+ν decay [20, 21, 22, 23, 24,
25, 26], to theoretical calculations from quark models [7, 8, 9, 10, 11, 12, 13], from
lattice QCD [14, 15, 16, 17, 18], and from sum rules [19]. We label the theoretical
calculations from the authors or the collaboration name (see references). The error bars
for experimental results include statistical and systematic errors (added in quadrature),
the component from statistical uncertainty is indicated by the mark.

D0→K0π−µ+ν D+→K−π+µ+ν

A(GeV−1) 0.35 ± 0.22 ± 0.05 0.330 ± 0.022 ± 0.015

Table 8.1: The measurement of A presented in this thesis is compared to the FOCUS
result for the decay D+ → K−π+µ+ν. We fix the S-wave phase to 0.68, the value
measured for the D+.
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results for rv and r2 to previous measurements and to theoretical predictions from quark

models, lattice QCD, and sum rules. In all cases the agreement is excellent.

8.3.1 Measurement of Γ(D0 → K∗(892)−µ+ν)/Γ(D0 → K0π−π+)

In order to measure the semileptonic vector branching ratio, we use the normal-

ization mode D0 → K0π−π+. This decay is similar to the semimuonic mode, since it

contains a K0
S in the final state and it has the same track multiplicity. This allows for

us to apply most of the requirements used for the semileptonic mode to the hadronic

mode, and therefore reduce possible bias due to poor Monte Carlo evaluation of the

efficiency. For the D0 → K0π−π+ decay, we select events that lie within two standard

deviations of the fit D0 mass and we fit the ∆M distribution. This fit uses two Gaus-

sian distributions for the signal events plus the threshold function in Eq. 7.2 for the

background. The fit is shown in Fig. 8.3. We find 1918 ± 52 events.

In order to measure the branching ratio, we divide the efficiency corrected yields

of the two modes. In the semimuonic mode we correct for the amount of K∗(892)− in

the K0π− system. The systematic uncertainty is determined from careful studies of

three different sources. The variance of a set of measurements obtained by varying

the fitting range and bin size is taken as the bias due to the fit choices. We use the

split sample method described in Appendix C to investigate bias due to poor momentum

simulation. Finally, we determine a bias due to the input model for the Monte Carlo. For

this study we investigate the D0 → K0π−π+ resonant structure, the hadron calorimeter

simulation, and the input values of rv, r2, A, and δ (the S-wave-phase).

We measure the branching ratio to be:

Γ(D0 → K∗(892)−µ+ν)

Γ(D0 → K0π−π+)
= 0.337 ± 0.034 ± 0.013 (8.5)

where the first error is statistical and the second is systematic.
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This branching ratio has not been previously reported for the semimuonic channel,

but the expected value can be calculated in different ways. Isospin symmetry gives:

Γ(D0 → K∗−µ+ν) = Γ(D+ → K∗0µ+ν) (8.6)

For both charm species the absolute branching fraction can be written as:

B(D0/+ → K∗µν) =
Γ(D0/+ → K∗µν)

Γ(D0/+)
× B(D0/+ → Kππ)

B(D0/+ → Kππ)
(8.7)

Using equation 8.6 and 8.7, we find:

Γ(D0 → K∗−µ+ν)

Γ(D0 → K0π−π+)
=

Γ(D+)

Γ(D0)
× Γ(D+ → K∗0µ+ν)

Γ(D+ → K−π+π+)
× B(D+ → K−π+π+)

B(D0 → K0π−π+)

=
410 ± 1.9 fs

1039 ± 8.2 fs
× (0.602 ± 0.02) × 0.092 ± 0.006

0.0597 ± 0.0035
(8.8)

= 0.366 ± 0.034

where we use the Particle Data Group [39] values for the D absolute branching fractions

B(D0/+ → Kππ), and the FOCUS measurements for the D mesons lifetimes [42] and for

the branching ratio Γ(D+ → K∗0µ+ν)/Γ(D+ → K−π+π+) [43]. The systematic and

statistical errors on the single measurements in Eq. 8.8 have been added in quadrature

before determining the propagated error.

Another evaluation of the branching ratio value can be derived from the CLEO II

measurement [44] of the branching ratio for the semielectronic channel:

Γ(D0 → K∗−e+νe)

Γ(D0 → K0π−π+)
= 0.38 ± 0.06 (stat) ± 0.03 (sys)

The CLEO-c experiment recently measured the absolute branching fraction of

D0 → K∗−e+νe [45] to be (2.07 ± 0.23 ± 0.18)%. This measurement can be used
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along with the Particle Data Group value for the D0 → K0π−π+ branching fraction to

calculate the semielectronic branching ratio:

Γ(D0 → K∗−e+ν)

Γ(D0 → K0π−π+)
=

B(D0 → K∗−e+νe)

B(D0 → K0π−π+)

=
2.07 ± 0.29

5.97 ± 0.35
= 0.35 ± 0.06 (8.9)

where the branching fraction statistical and systematic errors have been added in

quadrature before computing the propagated error. The decay dynamics of the semimuonic

and the semielectronic modes are identical, differences in the decay amplitude are only

due to the larger mass of the muon as compared to the electron. As the muon is more

massive, there is a reduction in phase space and a more significant contribution from

the term ∼ m2 of the decay amplitude (see equation 1.7). According to the Parti-

cle Data Group, the electron values must corrected by a factor of 0.952 to compare to

the muon results.

The comparison of our branching ratio measurement with the semielectronic re-

sults and with the estimate from isospin invariance is shown in Fig. 8.4. Only the

calculation from isospin symmetry includes the effects of the S–Wave component. We

find excellent agreement between our measurements and all of the estimates, which come

from different measurements.

8.4 Summary and Prospects

We have described in detail the analysis of the decay D0 → K0π−µ+ν using FO-

CUS data. We report for the first time the measurements of the form factor ratios rv and

r2, the S-wave amplitude and of the branching ratio Γ(D0 → K∗(892)−µ+ν)/Γ(D0 →
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Figure 8.4: The Γ(D0 → K∗(892)−µ+ν)/Γ(D0 → K0π−π+) FOCUS measure-
ment is compared to the CLEO–II measurement of the semielectronic mode (D0 →
K∗−(892)e+ν/D0 → K0π−π+), with the CLEO–c measurement of B(D0 → K∗−e+νe)
divided by the Particle Data Group average for B(D0 → K0π−π+), and to an estimate
from isospin symmetry using the FOCUS measurement of D+ → K−π+µ+ν . The semi-
electronic results are corrected to account for the smaller electron mass when compared
to the muon, they do not include the S–Wave component. For the first two points the
error bars indicate the sum in quadrature of the statistical and systematic error and
the mark indicates the statistical error alone. The estimates in the last two points are
determined using results from different experiments. To calculate the error we add in
quadrature statistical and systematic uncertainty on each value used and we propagate
such errors in order to determine the uncertainty on the estimate.
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K0π−π+). We measure:

rv = 1.71 ± 0.68 ± 0.34 (8.10)

r2 = 0.91 ± 0.37 ± 0.10 (8.11)

A = 0.35 ± 0.22 ± 0.05 GeV−1 (8.12)

Γ(D0 → K∗(892)−µ+ν)

Γ(D0 → K0π−π+)
= 0.337 ± 0.034 ± 0.013 (8.13)

where first error is statistical and second is systematic. All of these measurements are

in very good agreement with the expected values obtained from isospin symmetry and

from results that use the semielectronic channel.

Although limited by statistics, these results are important confirmations of the

expected values for the never before investigated mode D0 → K0π−µ+ν. The era of

experiments fully dedicated to charm studies is close to its end. The future of charm

physics resides in the experiments where particles containing the b quark are produced

copiously (the so called “b–factories”). In these experiments charm particles can be

produced either directly from the process e+e− → cc̄, or indirectly from the Cabibbo

favored decays of bottom hadrons to charm hadrons. The study of the decay D0 →

K0π−µ+ν has just begun, but much higher statistics samples are necessary to extract

additional information on the underlying physics. Using a higher statistics sample the

S-wave model for the D0 could be conclusively tested, and an adequate sensitivity to

measure the r3 form factor ratio could be reached. For this analysis we have assumed

the q2 dependence of the form factors is given by the pole mass form:

Ai(q
2) =

Ai(0)

1 − q2

M2
A

(8.14)

V (q2) =
V (0)

1 − q2

M2
V

(8.15)

where MA and MV are the masses of two excited cs̄ states with axial and vector quan-

tum numbers (JP = 1+ and JP = 1−, respectively). This q2 dependence has been
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recently investigated by the FOCUS collaboration for the decay D0 → K−µ+ν [46].

For this decay only MV is a parameter of the decay amplitude. The study reports a

pole mass that is more than 4σ lower than the expected pole mass. A modified pole

mass dependence where the form factor f(q2) has the form:

f(q2) =
f(0)

(

1 − q2

M2
V

)(

1 − α q2

M2
V

) (8.16)

has also been investigated for such analysis. The parameter α, which measures the

distortion from the pole mass ansatz, has been measured to be different from zero

(α = 0.28 ± 0.08 ± 0.07). Due to the limited statistics the q2 dependence has never

been tested for the decay D0 → K0π−µ+ν. As quark models assume a functional

dependence on q2 for the form factors, these experimental studies are extremely im-

portant. In the future we expect that they will be thoroughly investigated for the

D0 → K0π−µ+ν mode.
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Appendix A

D∗ Cone

Let’s consider a semileptonic decay D → Xν, whereX is the collection of particles

reconstructed in the final state, including a charged lepton `+. If the D meson comes

from the decay D∗+ → D0π+, it is possible to evaluate the value of q2 = (p` + pν).

The method, called “D∗ cone”, does not provide the exact solution for q2 , but the best

hypothesis for its value based on a χ2 arbitration.

In the equations of this appendix, the quantities of πsoft will be labeled π̃ for

convenience. By applying energy–momentum conservation we find an expression that

relates the D0 momentum and the angle between the πsoft and the D0 direction:

p2
D∗ = (p2

D + p2
π̃)

m2
D∗ = m2

D +m2
π̃ + 2(Eπ̃ED − |~pπ̃| · |~pD| cos θ)

cos θ =
1

2|~pπ̃||~pD| (m
2
D +m2

π̃ + 2Eπ̃ED −m2
D∗) (A.1)

In Fig. A.1 we show a schematic of the event in the X rest frame, which for the

decay mode studied in this thesis is the K∗µ rest frame 1 . Let’s define the z axis along

the πsoft direction. This way θ is the polar angle. In this reference frame the D0 and

1 For the D∗ cone method it is not necessary to know whether the K0π−system is in fact in the
K∗(892)− state or not. The sum of all the reconstructed particles in the final state is what really is
used, without assumption on the resonant state.
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Figure A.1: A schematic for the D∗ cone method is shown. In the K∗µ rest frame,
pD = pν , and the angle θ between the D0 and ν direction is determined. The Φ angle
is not known, and the possible solutions lie on a cone.
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the neutrino momenta are the same. It holds:

p2
D = (pKµ + pν)

2

m2
D = m2

Kµ + 2MKµ|~pν |

|~pν | = |~pD| =
m2

D −m2
Kµ

2mKµ
(A.2)

Using the nominal mass of theD∗ andD0 mesons, and the reconstructed πsoft mo-

mentum, the magnitude of the D0 (and neutrino) momentum and cos θ are determined

from Eq. A.1 and A.2. The angle φ is not determined though, so the possible solutions

are infinite. The set of possible solutions lies on a cone, hence the name of the algorithm.

The momentum is evaluated by boosting a given solution 2 (corresponding to one

value for the angle Φ) in the laboratory frame and comparing the direction of flight of

the D0 given by this solution to the line connecting the primary and secondary vertices

previously reconstructed. The χ2 between the two directions is used for arbitration. This

way the best hypothesis for the neutrino momentum is found and the corresponding best

hypothesis for q2 is calculated. As stated before, this method is based on assuming the

nominal mass for the D0 and the D∗ mesons, therefore it cannot be used to calculate

the mass difference ∆M = m∗
D −mD.

2 The algorithm uses 1000 Φ values equally spaced in the 2π range.



Appendix B

Neutrino Closure

Although the neutrino is not detected, the D0 momentum in semileptonic decays

can be calculated up to a two–fold ambiguity by imposing energy–momentum conser-

vation. Let pD be the D0 momentum, pν be the neutrino momentum, and pKµ be the

four momentum of the detected particles in the final state, pKµ = p(K∗) + p(µ). Then

it holds:

pν = pD − pKµ

p2
ν = (pD − pKµ)2

m2
ν = m2

D +m2
Kµ − 2pD · pKµ

Defining ρ as the magnitude of the D0 three–momentum, and p̂D its direction,

we have:

m2
ν = m2

D +m2
Kµ − 2EDEKµ + 2ρ p̂D · ~pKµ

ED =
1

2EKµ
(M2 + 2ρ p̂D · ~pKµ) (B.1)

Where M2 = m2
D +m2

Kµ −m2
ν . Eq. B.1 is a second order equation for ρ:

√

ρ2 +m2
D =

1

2EKµ
(M2 + 2ρ p̂D · ~pKµ)

[(
p̂D · ~pKµ

EKµ

)2

− 1

]

ρ2+

[

M2ρ p̂D · ~pKµ

E2
Kµ

]

ρ+

[(
M2

2EKµ

)2

−m2
D

]

= 0 (B.2)
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In general solving this equation requires knowing the D0 direction (p̂D). In the

Kµ rest frame, where ~pKµ = ~0, it is not necessary to know p̂D and Eq. B.2 assumes the

simple form:

ρ2 =

(
M2

2EKµ

)2

−m2
D

Of the two possible solutions one is sometimes unphysical, so it can be discarded. Monte

Carlo studies show that the solution that gives the lower value of ∆M is most often the

real one.



Appendix C

Split Sample

We use the split sample technique in order to estimate the systematic bias on

the parameter x (e.g. rv) due to poor Monte Carlo simulation of a certain variable

(e.g. the momentum). The split sample technique starts by dividing the sample into N

subsamples based on the value of the variable under study, for instance into high and

low momentum regions. From the subsamples we obtain N statistically independent

measurements of the parameter, xi, with their errors, σi. If the simulation is correct,

then the only differences among the N measurements are due to statistical fluctuations.

We compute the weighted average < x > :

< x > =

N∑

i=1

(xi/σi)
2

1/σ2
i

and we formulate the hypothesis that the N measurements can be fit by a single param-

eter, the weighted average. The confidence level of the consistency hypothesis is given

by a χ2 per (N − 1) degrees of freedom. The χ2 is given by:

χ2 =
N∑

i=1

(xi− < x >)2

σ2
i

If χ2/(N − 1) ≤ 1, then we consider the measurements statistically consistent,

and we estimate the systematic bias to be null. If χ2/(N − 1) >1, we calculate new

errors σ′i on the N measurements by scaling σi in the following way:

σ′i = σi ·
χ2

N − 1
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With this definition it automatically holds χ2/(N − 1) = 1. The statistical error σ on

the average is also scaled:

σ̃ = σ

√

χ2

N − 1

We compare the scaled error on the average, σ̃, to the statistical error that the fit

reports on the whole sample, σ◦. If σ̃ < σ◦, then we conclude that there is no systematic

bias. If σ̃ > σ◦, then we estimate the systematic error by subtracting in quadrature

the statistical error from the scaled error on the weighted average measurements. To

summarize, we have:

σ(sys) = 0 for σ̃ < σ◦

σ(sys) =
√

σ̃2 − σ2
◦ for σ̃ > σ◦

This method allows for us to separate effects due to statistical fluctuations from

effects due to possible bias from poor simulation. Moreover, the algorithm is indepen-

dent of the number of subsamples N , since as N increases, variance < x2 > − < x >2

also increases proportionally to N because the statistics of each sample are reduced by

a factor 1/N .


